[1] | World Health Organization. World malaria report 2019[R]. Geneva: WHO, 2019. | [2] | Ashley EA, Pyae Phyo A, Woodrow CJ. Malaria[J]. Lancet, 2018,391(10130):1608-1621. | [3] | Nacer A, Movila A, Sohet F, et al. Experimental cerebral malaria pathogenesis: hemodynamics at the blood brain barrier[J]. PLoS Pathog, 2014,10(12):e1004528. | [4] | Chen HM, Fu YZ, Chen JP, et al. The roles of vascular endothelial growth factor in cerebral malaria[J]. J Trop Med, 2017,17(2):269-273. (in Chinese) | [4] | ( 陈宏敏, 傅毅振, 陈金平, 等. 血管内皮生长因子在脑型疟疾中的作用[J]. 热带医学杂志, 2017,17(2):269-273.) | [5] | Cariaco Y, Lima WR, Sousa R, et al. Ethanolic extract of the fungus Trichoderma stromaticum decreases inflammation and ameliorates experimental cerebral malaria in C57BL/6 mice[J]. Sci Rep, 2018,8(1):1547. | [6] | Kho S, Marfurt J, Handayuni I, et al. Characterization of blood dendritic and regulatory T cells in asymptomatic adults with sub-microscopic Plasmodium falciparum or Plasmodium vivax infection[J]. Malar J, 2016,15:328. | [7] | Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. Ⅰ. Distribution of reactivity and specificity[J]. Int J Cancer, 1975,16(2):216-229. | [8] | Campbell KS, Hasegawa J. Natural killer cell biology: an update and future directions[J]. J Allergy Clin Immunol, 2013,132(3):536-544. | [9] | Artavanis-Tsakonas K, Riley EM. Innate immune response to malaria: rapid induction of IFN-Gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes[J]. J Immunol, 2002,169(6):2956-2963. | [10] | Crouse J, Xu HC, Lang PA, et al. NK cells regulating T cell responses: mechanisms and outcome[J]. Trends Immunol, 2015,36(1):49-58. | [11] | Jiao L, Gao XL, Joyee AG, et al. NK cells promote type 1 T cell immunity through modulating the function of dendritic cells during intracellular bacterial infection[J]. J Immunol, 2011,187(1):401-411. | [12] | de Souza JB, Hafalla JC, Riley EM, et al. Cerebral malaria: why exprimental murine are required to undersand the pathogenesis of disease[J]. Parasitology, 2010,137(5):755-772. | [13] | Hora R, Kapoor P, Thind KK, et al. Cerebral malaria--clinical manifestations and pathogenesis[J]. Metab Brain Dis, 2016,31(2):225-237. | [14] | Storm J, Craig AG. Pathogenesis of cerebral malaria: inflammation and cytoadherence[J]. Front Cell Infect Microbiol, 2014,4:100. | [15] | Du YT, Zhao W, Xu L, et al. Effect of artesunate combined with erythropoietin on the expression of cerebral malaria-associated factors in mice[J]. Chin J Parasitol Parasit Dis, 2019,37(5):525-531. (in Chinese) | [15] | ( 杜云婷, 赵薇, 徐兰, 等. 青蒿琥酯与促红细胞生成素联合使用对小鼠脑型疟相关因子表达的影响[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(5):525-531.) | [16] | Amani V, Vigário AM, Belnoue E, et al. Involvement of IFN-gamma receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection[J]. Eur J Immunol, 2000,30(6):1646-1655. | [17] | Berretta F, Piccirillo CA, Stevenson MM. Plasmodium chabaudi AS infection induces CD4+ Th1 cells and Foxp3+ T-bet+ regulatory T cells that express CXCR3 and migrate to CXCR3 ligands[J]. Front Immunol, 2019,10:425. | [18] | Berretta F, St-Pierre J, Piccirillo CA, et al. IL-2 contributes to maintaining a balance between CD4+Foxp3+ regulatory T cells and effector CD4+ T cells required for immune control of blood-stage malaria infection[J]. J Immunol, 2011,186(8):4862-4871. | [19] | Kurup SP, Obeng-Adjei N, Anthony SM, et al. Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4[J]. Nat Med, 2017,23(10):1220-1225. | [20] | Wilson KD, Ochoa LF, Solomon OD, et al. Elimination of intravascular thrombi prevents early mortality and reduces gliosis in hyper-inflammatory experimental cerebral malaria[J]. J Neuroinflammation, 2018,15(1):173. | [21] | Ng SS, Souza-Fonseca-Guimaraes F, Rivera FL, et al. Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection[J]. Clin Transl Immunol, 2018,7(1):e1003. |
|