[1] | World Health Organization.World Malaria Report 2017[R]. Geneva: WHO, 2017: 17-18. | [2] | 张丽, 丰俊, 张少森, 等. 2017年全国消除疟疾进展及疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3): 201-209. | [3] | 曹淳力,郭家钢. “一带一路”建设中重要寄生虫病防控面临的挑战与对策[J]. 中国血吸虫病防治杂志, 2018, 30(2): 111-116. | [4] | Talundzic E, Okoth SA, Congpuong K, et al. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign[J]. PLoS Pathog, 2015, 11(4): e1004789. | [5] | Lu F, Culleton R, Zhang MH, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in africa[J]. N Engl J Med, 2017, 376(10): 991-993. | [6] | Matuschewski K.Vaccines against malaria-still a long way to go[J]. FEBS J, 2017, 284(16): 2560-2568. | [7] | Hoffman SL, Vekemans J, Richie TL, et al. The march toward malaria vaccines[J]. Vaccine, 2015, 33(Suppl 4): D13-D23. | [8] | RTS, S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial[J]. Lancet, 2015, 386(9988): 31-45. | [9] | Olotu A, Fegan G, Wambua J, et al. Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure[J]. N Engl J Med, 2013, 368(12): 1111-1120. | [10] | Mordmüller B, Surat G, Lagler H, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine[J]. Nature, 2017, 542(7642): 445-449. | [11] | Jiang LB, Mu JB, Zhang QF, et al. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum[J]. Nature, 2013, 499(7457): 223-227. | [12] | Ashley EA, Pyae Phyo A, Woodrow CJ.Malaria[J]. Lancet, 2018, 391(10130): 1608-1621. | [13] | Ghazanfari N, Mueller SN, Heath WR.Cerebral malaria in mouse and man[J]. Front Immunol, 2018, 9: 2016. | [14] | Howland SW, Poh CM, Gun SY, et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria[J]. EMBO Mol Med, 2013, 5(7): 984-999. | [15] | Howland SW, Poh CM, Rénia L.Activated brain endothelial cells cross-present malaria antigen[J]. PLoS Pathog, 2015, 11(6): e1004963. | [16] | 华海涌, 孙芳, 陈伟, 等. 世界卫生组织《重症疟疾管理实用手册》(第三版)解读[J]. 中国热带医学, 2018, 18(7): 643-649. | [17] | Schildberg FA, Klein SR, Freeman GJ, et al. Coinhibitory pathways in the B7-CD28 ligand-receptor family[J]. Immunity, 2016, 44(5): 955-972. | [18] | Wykes MN, Lewin SR.Immune checkpoint blockade in infectious diseases[J]. Nat Rev Immunol, 2018, 18(2): 91-104. | [19] | Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory pathways in immunotherapy for cancer[J]. Annu Rev Immunol, 2016, 34: 539-573. | [20] | Callahan MK, Postow MA, Wolchok JD.Targeting T cell Co-receptors for cancer therapy[J]. Immunity, 2016, 44(5): 1069-1078. | [21] | Wykes MN, Horne-Debets JM, Leow CY, et al. Malaria drives T cells to exhaustion[J]. Front Microbiol, 2014, 5: 249. | [22] | Won TJ, Jung YJ, Kwon SJ, et al. Forced expression of programmed death-1 gene on T cell decreased the incidence of type 1 diabetes[J]. Arch Pharm Res, 2010, 33(11): 1825-1833. | [23] | Wang GH, Hu P, Yang J, et al. The effects of PDL-Ig on collagen-induced arthritis[J]. Rheumatol Int, 2011, 31(4): 513-519. | [24] | Zhou H, Xiong LJ, Wang YX, et al. Treatment of murine lupus with PD-LIg[J]. Clin Immunol, 2016, 162: 1-8. | [25] | Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and long-term outcomes in kidney transplantation[J]. N Engl J Med, 2016, 374(4): 333-343. | [26] | Fernandez-Ruiz D, Ng WY, Holz LE, et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection[J]. Immunity, 2016, 45(4): 889-902. | [27] | Opata MM, Ibitokou SA, Carpio VH, et al. Protection by and maintenance of CD4 effector memory and effector T cell subsets in persistent malaria infection[J]. PLoS Pathog, 2018, 14(4): e1006960. | [28] | Chua CL, Brown G, Hamilton JA, et al. Monocytes and macrophages in malaria: protection or pathology?[J]. Trends Parasitol, 2013, 29(1): 26-34. | [29] | Chandele A, Mukerjee P, Das G, et al. Phenotypic and functional profiling of malaria-induced CD8 and CD4 T cells during blood-stage infection with Plasmodium yoelii[J]. Immunology, 2011, 132(2): 273-286. | [30] | Bayarsaikhan G, Miyakoda M, Yamamoto K, et al. Activation and exhaustion of antigen-specific CD8+ T cells occur in different splenic compartments during infection with Plasmodium berghei[J]. Parasitol Int, 2017, 66(3): 227-235. | [31] | Horne-Debets JM, Faleiro R, Karunarathne DS, et al. PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria[J]. Cell Rep, 2013, 5(5): 1204-1213. | [32] | Butler NS, Moebius J, Pewe LL, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection[J]. Nat Immunol, 2011, 13(2): 188-195. | [33] | Doe HT, Kimura D, Miyakoda M, et al. Expression of PD-1/LAG-3 and cytokine production by CD4(+) T cells during infection with Plasmodium parasites[J]. Microbiol Immunol, 2016, 60(2): 121-131. | [34] | Illingworth J, Butler NS, Roetynck S, et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion[J]. J Immunol, 2013, 190(3): 1038-1047. | [35] | Costa PA, Leoratti FM, Figueiredo MM, et al. Induction of inhibitory receptors on T cells during Plasmodium vivax malaria impairs cytokine production[J]. J Infect Dis, 2015, 212(12): 1999-2010. | [36] | Gogoi D, Biswas D, Borkakoty B, et al. Exposure to Plasmodium vivax is associated with the increased expression of exhaustion markers on γδ T lymphocytes[J]. Parasite Immunol, 2018, 40(12): e12594. | [37] | Hou N, Zou Y, Piao XY, et al. T-cell immunoglobulin-and mucin-domain-containing molecule 3 signaling blockade improves cell-mediated immunity against malaria[J]. J Infect Dis, 2016, 214(10): 1547-1556. | [38] | Schlotmann T, Waase I, Jülch C, et al. CD4 alphabeta T lymphocytes express high levels of the T lymphocyte antigen CTLA-4 (CD152) in acute malaria[J]. J Infect Dis, 2000, 182(1): 367-370. | [39] | Braun N, Marfo Y, Von Gärtner C, et al. CTLA-4 positive T cells in contrast to procalcitonin plasma levels discriminate between severe and uncomplicated Plasmodium falciparum malaria in Ghanaian children[J]. Trop Med Int Health, 2003, 8(11): 1018-1024. | [40] | Tartz S, Kamanova J, Simsova M, et al. Immunization with a circumsporozoite epitope fused to Bordetella pertussis adenylate cyclase in conjunction with cytotoxic T-lymphocyte-associated antigen 4 blockade confers protection against Plasmodium berghei liver-stage malaria[J]. Infect Immun, 2006, 74(4): 2277-2285. | [41] | Kisielow M, Kisielow J, Capoferri-Sollami G, et al. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells[J]. Eur J Immunol, 2005, 35(7): 2081-2088. | [42] | Lino AC, Dang VD, Lampropoulou V, ,et al. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells[J]. Immunity. 2018, 49(1): 120-133.e9. | [43] | Karunarathne DS, Horne-Debets JM, Huang JX, et al. Programmed death-1 ligand 2-mediated regulation of the PD-L1 to PD-1 Axis is essential for establishing CD4(+) T cell immunity[J]. Immunity, 2016, 45(2): 333-345. | [44] | Hafalla JC, Claser C, Couper KN, et al. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology[J]. PLoS Pathog, 2012, 8(2): e1002504. | [45] | Spence PJ, Langhorne J.T cell control of malaria pathogenesis[J]. Curr Opin Immunol, 2012, 24(4): 444-448. | [46] | Triller G, Scally SW, Costa G, ,et al. Natural parasite exposure induces protective human anti-malarial antibodies[J]. Immunity.2017, 47(6): 1197-1209.e10. | [47] | Crotty S.T follicular helper cell differentiation, function, and roles in disease[J]. Immunity, 2014, 41(4): 529-542. | [48] | 赵晨浩, 刘太平, 赵婷婷, 等. Balb/c小鼠PD-1敲除后抑制疟原虫生长及其机制初探[J]. 免疫学杂志, 2014, 30(2): 100-104. | [49] | Liu TP, Lu X, Zhao CH, et al. PD-1 deficiency enhances humoral immunity of malaria infection treatment vaccine[J]. Infect Immun, 2015, 83(5): 2011-2017. | [50] | Liu TP, Cheng XY, Ding Y, et al. PD-1 deficiency promotes TFH cells expansion in ITV-immunized mice by upregulating cytokines secretion[J]. Parasit Vectors, 2018, 11(1): 397. | [51] | Josefowicz SZ, Lu LF, Rudensky AY.Regulatory T cells: mechanisms of differentiation and function[J]. Annu Rev Immunol, 2012, 30: 531-564. | [52] | Minigo G, Woodberry T, Piera KA, et al. Parasite-dependent expansion of TNF receptor II-positive regulatory T cells with enhanced suppressive activity in adults with severe malaria[J]. PLoS Pathog, 2009, 5(4): e1000402. | [53] | Gautron AS, Dominguez-Villar M, de Marcken M, et al. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells[J]. Eur J Immunol, 2014, 44(9): 2703-2711. | [54] | Sega EI, Leveson-Gower DB, Florek M, et al. Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation[J]. PLoS One, 2014, 9(1): e86551. | [55] | Kurup SP, Obeng-Adjei N, Anthony SM, et al. Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4[J]. Nat Med, 2017, 23(10): 1220-1225. | [56] | Randall LM, Amante FH, McSweeney KA, et al. Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities[J]. Infect Immun, 2008, 76(7): 3312-3320. | [57] | Cambos M, Bélanger B, Jacques A, et al. Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion[J]. Int J Parasitol, 2008, 38(2): 229-238. | [58] | Hansen DS, Schofield L.Natural regulatory T cells in malaria: host or parasite allies?[J]. PLoS Pathog, 2010, 6(4): e1000771. | [59] | Parsons E, Epstein J, Sedegah M, et al. Decrease in circulating CD25(hi)Foxp3(+) regulatory T cells following vaccination with the candidate malaria vaccine RTS, S[J]. Vaccine, 2016, 34(38): 4618-4625. | [60] | Beldi-Ferchiou A, Caillat-Zucman S.Control of NK cell activation by immune checkpoint molecules[J]. Int J Mol Sci, 2017, 18(10): E2129. | [61] | Hou N, Jiang N, Zou Y, et al. Down-regulation of tim-3 in monocytes and macrophages in Plasmodium infection and its association with parasite clearance[J]. Front Microbiol, 2017, 8: 1431. | [62] | Jacobs T, Graefe SE, Niknafs S, et al. Murine malaria is exacerbated by CTLA-4 blockade[J]. J Immunol, 2002, 169(5): 2323-2329. | [63] | Khandare AV, Bobade D, Deval M, et al. Expression of negative immune regulatory molecules, pro-inflammatory chemokine and cytokines in immunopathology of ECM developing mice[J]. Acta Trop, 2017, 172: 58-63. | [64] | Opata MM, Carpio VH, Ibitokou SA, et al. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells[J]. J Immunol, 2015, 194(11): 5346-5354. | [65] | Lepenies B, Gaworski I, Tartz S, et al. CTLA-4 blockade differentially influences the outcome of non-lethal and lethal Plasmodium yoelii infections[J]. Microbes Infect, 2007, 9(6): 687-694. | [66] | Dulgerian LR, Garrido VV, Stempin CC, et al. Programmed death ligand 2 regulates arginase induction and modifies Trypanosoma cruzi survival in macrophages during murine experimental infection[J]. Immunology, 2011, 133(1): 29-40. | [67] | Anderson AC, Joller N, Kuchroo VK.Lag-3, tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation[J]. Immunity, 2016, 44(5): 989-1004. | [68] | Jacobs T, Plate T, Gaworski I, et al. CTLA-4-dependent mechanisms prevent T cell induced-liver pathology during the erythrocyte stage of Plasmodium berghei malaria[J]. Eur J Immunol, 2004, 34(4): 972-980. | [69] | Liu JF, Huang SG, Su XZ, et al. Blockage of galectin-receptor interactions by α-lactose exacerbates Plasmodium berghei- induced pulmonary immunopathology[J]. Sci Rep, 2016, 6: 32024. | [70] | Liu JF, Xiao SY, Huang SG, et al. Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model[J]. Parasitol Res, 2016, 115(2): 587-595. | [71] | Mackroth MS, Abel A, Steeg C, et al. Acute malaria induces PD1+CTLA4+ effector T cells with cell-extrinsic suppressor function[J]. PLoS Pathog, 2016, 12(11): e1005909. | [72] | Villegas-Mendez A, Inkson CA, Shaw TN, et al. Long-lived CD4+IFN-γ+ T cells rather than short-lived CD4+IFN-γ+IL-10+ T cells initiate rapid IL-10 production to suppress anamnestic T cell responses during secondary malaria infection[J]. J Immunol, 2016, 197(8): 3152-3164. | [73] | Obeng-Adjei N, Portugal S, Tran TM, et al. Circulating th1-cell-type tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children[J]. Cell Rep, 2015, 13(2): 425-439. | [74] | Costa PAC, Figueiredo MM, Diniz SQ, et al. Plasmodium vivax infection impairs regulatory T-cell suppressive function during acute malaria[J]. J Infect Dis, 2018, 218(8): 1314-1323. | [75] | Haque A, Best SE, Amante FH, et al. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo[J]. PLoS Pathog, 2010, 6(12): e1001221. | [76] | Wei X, Li Y, Sun XD, et al. Erythropoietin protects against murine cerebral malaria through actions on host cellular immunity[J]. Infect Immun, 2014, 82(1): 165-173. | [77] | Van Braeckel-Budimir N, Kurup SP, Harty JT. Regulatory issues in immunity to liver and blood-stage malaria[J]. Curr Opin Immunol, 2016, 42: 91-97. |
|