中国寄生虫学与寄生虫病杂志 ›› 2019, Vol. 37 ›› Issue (4): 472-480.doi: 10.12140/j.issn.1000-7423.2019.04.018
收稿日期:
2018-11-30
出版日期:
2019-08-30
发布日期:
2019-09-05
通讯作者:
赵亚
作者简介:
作者简介:王军(1988-),博士研究生,助教,从事疟原虫感染与免疫相关研究。E-mail:
基金资助:
Jun WANG(), Yan SHEN, Yue LI, Ya ZHAO*(
)
Received:
2018-11-30
Online:
2019-08-30
Published:
2019-09-05
Contact:
Ya ZHAO
Supported by:
摘要:
疟疾是严重威胁人类健康的头号虫媒传染病。宿主促炎和抑炎反应需要精细调控,以达到在快速清除病原体的同时避免免疫病理损伤的目的。近年来免疫检查点分子(ICM)在抗肿瘤、抗自身免疫性疾病等领域取得了突破性进展,给疟疾抗感染免疫研究,包括疟疾慢性感染和重症疟疾的免疫辅助治疗带来了新的启示。研究表明,在疟原虫慢性感染过程中,阻断ICM信号有助于恢复宿主免疫应答,加速清除疟原虫;在疟原虫急性感染导致的重症疟疾中,适度强化ICM信号,可降低宿主免疫应答,有助于缓解宿主体内免疫病理损伤。本文就ICM调控在不同原虫虫感染中的作用做一简要综述。
中图分类号:
王军, 沈燕, 李悦, 赵亚. 免疫检查点分子调控在疟原虫感染与免疫中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(4): 472-480.
Jun WANG, Yan SHEN, Yue LI, Ya ZHAO. Recent progress in immune checkpoint molecules in Plasmodium infection and immunity[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2019, 37(4): 472-480.
[1] | World Health Organization.World Malaria Report 2017[R]. Geneva: WHO, 2017: 17-18. |
[2] | 张丽, 丰俊, 张少森, 等. 2017年全国消除疟疾进展及疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3): 201-209. |
[3] | 曹淳力,郭家钢. “一带一路”建设中重要寄生虫病防控面临的挑战与对策[J]. 中国血吸虫病防治杂志, 2018, 30(2): 111-116. |
[4] | Talundzic E, Okoth SA, Congpuong K, et al. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign[J]. PLoS Pathog, 2015, 11(4): e1004789. |
[5] | Lu F, Culleton R, Zhang MH, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in africa[J]. N Engl J Med, 2017, 376(10): 991-993. |
[6] | Matuschewski K.Vaccines against malaria-still a long way to go[J]. FEBS J, 2017, 284(16): 2560-2568. |
[7] | Hoffman SL, Vekemans J, Richie TL, et al. The march toward malaria vaccines[J]. Vaccine, 2015, 33(Suppl 4): D13-D23. |
[8] | RTS, S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial[J]. Lancet, 2015, 386(9988): 31-45. |
[9] | Olotu A, Fegan G, Wambua J, et al. Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure[J]. N Engl J Med, 2013, 368(12): 1111-1120. |
[10] | Mordmüller B, Surat G, Lagler H, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine[J]. Nature, 2017, 542(7642): 445-449. |
[11] | Jiang LB, Mu JB, Zhang QF, et al. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum[J]. Nature, 2013, 499(7457): 223-227. |
[12] | Ashley EA, Pyae Phyo A, Woodrow CJ.Malaria[J]. Lancet, 2018, 391(10130): 1608-1621. |
[13] | Ghazanfari N, Mueller SN, Heath WR.Cerebral malaria in mouse and man[J]. Front Immunol, 2018, 9: 2016. |
[14] | Howland SW, Poh CM, Gun SY, et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria[J]. EMBO Mol Med, 2013, 5(7): 984-999. |
[15] | Howland SW, Poh CM, Rénia L.Activated brain endothelial cells cross-present malaria antigen[J]. PLoS Pathog, 2015, 11(6): e1004963. |
[16] | 华海涌, 孙芳, 陈伟, 等. 世界卫生组织《重症疟疾管理实用手册》(第三版)解读[J]. 中国热带医学, 2018, 18(7): 643-649. |
[17] | Schildberg FA, Klein SR, Freeman GJ, et al. Coinhibitory pathways in the B7-CD28 ligand-receptor family[J]. Immunity, 2016, 44(5): 955-972. |
[18] | Wykes MN, Lewin SR.Immune checkpoint blockade in infectious diseases[J]. Nat Rev Immunol, 2018, 18(2): 91-104. |
[19] | Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory pathways in immunotherapy for cancer[J]. Annu Rev Immunol, 2016, 34: 539-573. |
[20] | Callahan MK, Postow MA, Wolchok JD.Targeting T cell Co-receptors for cancer therapy[J]. Immunity, 2016, 44(5): 1069-1078. |
[21] | Wykes MN, Horne-Debets JM, Leow CY, et al. Malaria drives T cells to exhaustion[J]. Front Microbiol, 2014, 5: 249. |
[22] | Won TJ, Jung YJ, Kwon SJ, et al. Forced expression of programmed death-1 gene on T cell decreased the incidence of type 1 diabetes[J]. Arch Pharm Res, 2010, 33(11): 1825-1833. |
[23] | Wang GH, Hu P, Yang J, et al. The effects of PDL-Ig on collagen-induced arthritis[J]. Rheumatol Int, 2011, 31(4): 513-519. |
[24] | Zhou H, Xiong LJ, Wang YX, et al. Treatment of murine lupus with PD-LIg[J]. Clin Immunol, 2016, 162: 1-8. |
[25] | Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and long-term outcomes in kidney transplantation[J]. N Engl J Med, 2016, 374(4): 333-343. |
[26] | Fernandez-Ruiz D, Ng WY, Holz LE, et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection[J]. Immunity, 2016, 45(4): 889-902. |
[27] | Opata MM, Ibitokou SA, Carpio VH, et al. Protection by and maintenance of CD4 effector memory and effector T cell subsets in persistent malaria infection[J]. PLoS Pathog, 2018, 14(4): e1006960. |
[28] | Chua CL, Brown G, Hamilton JA, et al. Monocytes and macrophages in malaria: protection or pathology?[J]. Trends Parasitol, 2013, 29(1): 26-34. |
[29] | Chandele A, Mukerjee P, Das G, et al. Phenotypic and functional profiling of malaria-induced CD8 and CD4 T cells during blood-stage infection with Plasmodium yoelii[J]. Immunology, 2011, 132(2): 273-286. |
[30] | Bayarsaikhan G, Miyakoda M, Yamamoto K, et al. Activation and exhaustion of antigen-specific CD8+ T cells occur in different splenic compartments during infection with Plasmodium berghei[J]. Parasitol Int, 2017, 66(3): 227-235. |
[31] | Horne-Debets JM, Faleiro R, Karunarathne DS, et al. PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria[J]. Cell Rep, 2013, 5(5): 1204-1213. |
[32] | Butler NS, Moebius J, Pewe LL, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection[J]. Nat Immunol, 2011, 13(2): 188-195. |
[33] | Doe HT, Kimura D, Miyakoda M, et al. Expression of PD-1/LAG-3 and cytokine production by CD4(+) T cells during infection with Plasmodium parasites[J]. Microbiol Immunol, 2016, 60(2): 121-131. |
[34] | Illingworth J, Butler NS, Roetynck S, et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion[J]. J Immunol, 2013, 190(3): 1038-1047. |
[35] | Costa PA, Leoratti FM, Figueiredo MM, et al. Induction of inhibitory receptors on T cells during Plasmodium vivax malaria impairs cytokine production[J]. J Infect Dis, 2015, 212(12): 1999-2010. |
[36] | Gogoi D, Biswas D, Borkakoty B, et al. Exposure to Plasmodium vivax is associated with the increased expression of exhaustion markers on γδ T lymphocytes[J]. Parasite Immunol, 2018, 40(12): e12594. |
[37] | Hou N, Zou Y, Piao XY, et al. T-cell immunoglobulin-and mucin-domain-containing molecule 3 signaling blockade improves cell-mediated immunity against malaria[J]. J Infect Dis, 2016, 214(10): 1547-1556. |
[38] | Schlotmann T, Waase I, Jülch C, et al. CD4 alphabeta T lymphocytes express high levels of the T lymphocyte antigen CTLA-4 (CD152) in acute malaria[J]. J Infect Dis, 2000, 182(1): 367-370. |
[39] | Braun N, Marfo Y, Von Gärtner C, et al. CTLA-4 positive T cells in contrast to procalcitonin plasma levels discriminate between severe and uncomplicated Plasmodium falciparum malaria in Ghanaian children[J]. Trop Med Int Health, 2003, 8(11): 1018-1024. |
[40] | Tartz S, Kamanova J, Simsova M, et al. Immunization with a circumsporozoite epitope fused to Bordetella pertussis adenylate cyclase in conjunction with cytotoxic T-lymphocyte-associated antigen 4 blockade confers protection against Plasmodium berghei liver-stage malaria[J]. Infect Immun, 2006, 74(4): 2277-2285. |
[41] | Kisielow M, Kisielow J, Capoferri-Sollami G, et al. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells[J]. Eur J Immunol, 2005, 35(7): 2081-2088. |
[42] | Lino AC, Dang VD, Lampropoulou V, ,et al. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells[J]. Immunity. 2018, 49(1): 120-133.e9. |
[43] | Karunarathne DS, Horne-Debets JM, Huang JX, et al. Programmed death-1 ligand 2-mediated regulation of the PD-L1 to PD-1 Axis is essential for establishing CD4(+) T cell immunity[J]. Immunity, 2016, 45(2): 333-345. |
[44] | Hafalla JC, Claser C, Couper KN, et al. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology[J]. PLoS Pathog, 2012, 8(2): e1002504. |
[45] | Spence PJ, Langhorne J.T cell control of malaria pathogenesis[J]. Curr Opin Immunol, 2012, 24(4): 444-448. |
[46] | Triller G, Scally SW, Costa G, ,et al. Natural parasite exposure induces protective human anti-malarial antibodies[J]. Immunity.2017, 47(6): 1197-1209.e10. |
[47] | Crotty S.T follicular helper cell differentiation, function, and roles in disease[J]. Immunity, 2014, 41(4): 529-542. |
[48] | 赵晨浩, 刘太平, 赵婷婷, 等. Balb/c小鼠PD-1敲除后抑制疟原虫生长及其机制初探[J]. 免疫学杂志, 2014, 30(2): 100-104. |
[49] | Liu TP, Lu X, Zhao CH, et al. PD-1 deficiency enhances humoral immunity of malaria infection treatment vaccine[J]. Infect Immun, 2015, 83(5): 2011-2017. |
[50] | Liu TP, Cheng XY, Ding Y, et al. PD-1 deficiency promotes TFH cells expansion in ITV-immunized mice by upregulating cytokines secretion[J]. Parasit Vectors, 2018, 11(1): 397. |
[51] | Josefowicz SZ, Lu LF, Rudensky AY.Regulatory T cells: mechanisms of differentiation and function[J]. Annu Rev Immunol, 2012, 30: 531-564. |
[52] | Minigo G, Woodberry T, Piera KA, et al. Parasite-dependent expansion of TNF receptor II-positive regulatory T cells with enhanced suppressive activity in adults with severe malaria[J]. PLoS Pathog, 2009, 5(4): e1000402. |
[53] | Gautron AS, Dominguez-Villar M, de Marcken M, et al. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells[J]. Eur J Immunol, 2014, 44(9): 2703-2711. |
[54] | Sega EI, Leveson-Gower DB, Florek M, et al. Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation[J]. PLoS One, 2014, 9(1): e86551. |
[55] | Kurup SP, Obeng-Adjei N, Anthony SM, et al. Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4[J]. Nat Med, 2017, 23(10): 1220-1225. |
[56] | Randall LM, Amante FH, McSweeney KA, et al. Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities[J]. Infect Immun, 2008, 76(7): 3312-3320. |
[57] | Cambos M, Bélanger B, Jacques A, et al. Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion[J]. Int J Parasitol, 2008, 38(2): 229-238. |
[58] | Hansen DS, Schofield L.Natural regulatory T cells in malaria: host or parasite allies?[J]. PLoS Pathog, 2010, 6(4): e1000771. |
[59] | Parsons E, Epstein J, Sedegah M, et al. Decrease in circulating CD25(hi)Foxp3(+) regulatory T cells following vaccination with the candidate malaria vaccine RTS, S[J]. Vaccine, 2016, 34(38): 4618-4625. |
[60] | Beldi-Ferchiou A, Caillat-Zucman S.Control of NK cell activation by immune checkpoint molecules[J]. Int J Mol Sci, 2017, 18(10): E2129. |
[61] | Hou N, Jiang N, Zou Y, et al. Down-regulation of tim-3 in monocytes and macrophages in Plasmodium infection and its association with parasite clearance[J]. Front Microbiol, 2017, 8: 1431. |
[62] | Jacobs T, Graefe SE, Niknafs S, et al. Murine malaria is exacerbated by CTLA-4 blockade[J]. J Immunol, 2002, 169(5): 2323-2329. |
[63] | Khandare AV, Bobade D, Deval M, et al. Expression of negative immune regulatory molecules, pro-inflammatory chemokine and cytokines in immunopathology of ECM developing mice[J]. Acta Trop, 2017, 172: 58-63. |
[64] | Opata MM, Carpio VH, Ibitokou SA, et al. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells[J]. J Immunol, 2015, 194(11): 5346-5354. |
[65] | Lepenies B, Gaworski I, Tartz S, et al. CTLA-4 blockade differentially influences the outcome of non-lethal and lethal Plasmodium yoelii infections[J]. Microbes Infect, 2007, 9(6): 687-694. |
[66] | Dulgerian LR, Garrido VV, Stempin CC, et al. Programmed death ligand 2 regulates arginase induction and modifies Trypanosoma cruzi survival in macrophages during murine experimental infection[J]. Immunology, 2011, 133(1): 29-40. |
[67] | Anderson AC, Joller N, Kuchroo VK.Lag-3, tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation[J]. Immunity, 2016, 44(5): 989-1004. |
[68] | Jacobs T, Plate T, Gaworski I, et al. CTLA-4-dependent mechanisms prevent T cell induced-liver pathology during the erythrocyte stage of Plasmodium berghei malaria[J]. Eur J Immunol, 2004, 34(4): 972-980. |
[69] | Liu JF, Huang SG, Su XZ, et al. Blockage of galectin-receptor interactions by α-lactose exacerbates Plasmodium berghei- induced pulmonary immunopathology[J]. Sci Rep, 2016, 6: 32024. |
[70] | Liu JF, Xiao SY, Huang SG, et al. Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model[J]. Parasitol Res, 2016, 115(2): 587-595. |
[71] | Mackroth MS, Abel A, Steeg C, et al. Acute malaria induces PD1+CTLA4+ effector T cells with cell-extrinsic suppressor function[J]. PLoS Pathog, 2016, 12(11): e1005909. |
[72] | Villegas-Mendez A, Inkson CA, Shaw TN, et al. Long-lived CD4+IFN-γ+ T cells rather than short-lived CD4+IFN-γ+IL-10+ T cells initiate rapid IL-10 production to suppress anamnestic T cell responses during secondary malaria infection[J]. J Immunol, 2016, 197(8): 3152-3164. |
[73] | Obeng-Adjei N, Portugal S, Tran TM, et al. Circulating th1-cell-type tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children[J]. Cell Rep, 2015, 13(2): 425-439. |
[74] | Costa PAC, Figueiredo MM, Diniz SQ, et al. Plasmodium vivax infection impairs regulatory T-cell suppressive function during acute malaria[J]. J Infect Dis, 2018, 218(8): 1314-1323. |
[75] | Haque A, Best SE, Amante FH, et al. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo[J]. PLoS Pathog, 2010, 6(12): e1001221. |
[76] | Wei X, Li Y, Sun XD, et al. Erythropoietin protects against murine cerebral malaria through actions on host cellular immunity[J]. Infect Immun, 2014, 82(1): 165-173. |
[77] | Van Braeckel-Budimir N, Kurup SP, Harty JT. Regulatory issues in immunity to liver and blood-stage malaria[J]. Curr Opin Immunol, 2016, 42: 91-97. |
[1] | 龚艳凤, 李紫芬, 唐乖, 黄美琴, 周炳华, 胡强. 2015—2022年江西省疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 586-592. |
[2] | 曹伟, 王一, 张熙致, 仝国栋, 杨超, 沈燕, 赵亚. 脑型疟辅助治疗研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 361-373. |
[3] | 耿燕, 兰子尧, 李杨, 戴佳芮, 蔡姗, 卢丽丹, 黄雨婷, 师伟芳, 佘丹娅. 2017—2021年贵州省疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 384-388. |
[4] | 张丽, 易博禹, 尹建海, 夏志贵. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 137-141. |
[5] | 陈朱云, 欧阳榕, 肖丽贞, 林耀莹, 谢汉国, 张山鹰. 福建省疟疾消除后基层监测响应系统现况分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 170-175. |
[6] | 陈志辉, 洪劲, 张荣兵, 杨倩, 叶青, 李建荣, 田荣. 2006—2021年昆明市疟疾流行特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 233-237. |
[7] | 刘建成, 许艳, 王龙江, 孔祥礼, 王用斌, 李曰进. 2015—2021年山东省临沂市输入性疟疾疫情监测分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 249-252. |
[8] | 张耀光, 江莉, 王真瑜, 朱民, 朱倩, 马晓疆, 余晴, 陈健. 2020—2021年上海市7例输入性疟疾病例误判原因分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 68-74. |
[9] | 李素华, 纪鹏慧, 周瑞敏, 贺志权, 钱丹, 杨成运, 刘颖, 鲁德领, 王昊, 张红卫, 赵玉玲. 2015—2019年河南省不同诊断机构疟原虫检测能力评价[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 748-753. |
[10] | 李美, 周何军, 夏志贵, 张丽, 涂宏, 尹建海. 2019年全国疟疾血涂片制作质量评估[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 754-759. |
[11] | 赵卉, 向征, 周隆参, 潘茂华, 杨照青. 阿莫地喹作为抗疟药的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 786-791. |
[12] | 纪鹏慧, 蒋甜甜, 贺志权, 周瑞敏, 李素华, 杨成运, 钱丹, 刘颖, 王昊, 张红卫. 2011—2021年河南省输入性三日疟流行病学特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 801-805. |
[13] | 冯宁宁, 陶薇, 冯彤, 甄素娟, 李军, 刘洪斌. 河北省疟疾消除及消除后媒介种群和密度监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 806-809. |
[14] | 史光忠, 张海亭, 王蒴, 何海波, 程侠, 买买提江·吾买尔, 于琳, 阿衣夏木·克尤木, 赵江山. 新冠肺炎流行期间新疆报告输入性卵形疟1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 689-691. |
[15] | 国家传染病医学中心撰写组. 疟疾诊疗指南[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 419-427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||