[1] | World Health Organization. World Malaria Report 2021[R]. Geneva: WHO, 2022. | [2] | Arya A, KojomFoko LP, Chaudhry S, et al. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: a systematic review of clinical studies from two malaria endemic regions-India and sub-Saharan Africa[J]. Int J Parasitol Drugs Drug Resist, 2021, 15: 43-56. | [3] | Pryce J, Richardson M, Lengeler C. Insecticide-treated nets for preventing malaria[J]. Cochrane Database Syst Rev, 2018, 11(11): CD000363. | [4] | Laurens MB. The promise of a malaria vaccine: are we closer?[J]. Annu Rev Microbiol, 2018, 72: 273-292. | [5] | Mendis K, Rietveld A, Warsame M, et al. From malaria control to eradication: the WHO perspective[J]. Trop Med Int Health, 2009, 14(7): 802-809. | [6] | Brashear AM, Cui LW. Population genomics in neglected malaria parasites[J]. Front Microbiol, 2022, 13: 984394. | [7] | Zamil MF, ArefeenSazed S, HaqueHossainey MR, et al. Anti-malarial investigation of Acoruscalamus, Dichapetalumgelonioides, and Leucasaspera on Plasmodium falciparum strains[J]. J Infect Dev Ctries, 2022, 16(11): 1768-1772. | [8] | Amelo W, Makonnen E. Efforts made to eliminate drug-resistant malaria and its challenges[J]. Biomed Res Int, 2021, 2021: 5539544. | [9] | Belfield KD, Tichy EM. Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency[J]. Am J Health Syst Pharm, 2018, 75(3): 97-104. | [10] | Dinis DV, Schapira A. Comparative study of sulfadoxine-pyrimethamine and amodiaquine + sulfadoxine-pyrimethamine for the treatment of malaria caused by chloroquine-resistant Plasmodium falciparum in Maputo, Mozambique[J]. Bull Soc Pathol Exot, 1990, 83(4): 521-528. | [11] | Takala-Harrison S, Laufer MK. Antimalarial drug resistance in Africa: key lessons for the future[J]. Ann N Y Acad Sci, 2015, 1342: 62-67. | [12] | Fukuda N, Tachibana SI, Ikeda M, et al. Ex vivo susceptibility of Plasmodium falciparum to antimalarial drugs in Northern Uganda[J]. Parasitol Int, 2021, 81: 102277. | [13] | Okombo J, Ohuma E, Picot S, et al. Update on genetic markers of quinine resistance in Plasmodium falciparum[J]. MolBiochem Parasitol, 2011, 177(2): 77-82. | [14] | White NJ. The treatment of malaria[J]. N Engl J Med, 1996, 335(11): 800-806. | [15] | Wellems TE, Plowe CV. Chloroquine-resistant malaria[J]. J Infect Dis, 2001, 184(6): 770-776. | [16] | Mvango S, Matshe WMR, Balogun AO, et al. Nanomedicines for malaria chemotherapy: encapsulation vs. polymer therapeutics[J]. Pharm Res, 2018, 35(12): 237. | [17] | Yang B, Sun YF, Lei Y, et al. Research progress on the treatment of malaria with artemisinin and its derivatives[J]. Chin J Parasitol Parasit Dis, 2021, 39(3): 393-402. (in Chinese) | | (杨博, 孙毅凡, 雷瑶, 等. 青蒿素及其衍生物治疗疟疾的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 393-402.) | [18] | Ashley EA, Phyo AP. Drugs in development for malaria[J]. Drugs, 2018, 78(9): 861-879. | [19] | Abuaku B, Boateng P, Peprah NY, et al. Therapeutic efficacy of dihydroartemisinin-piperaquine combination for the treatment of uncomplicated malaria in Ghana[J]. Front Cell Infect Microbiol, 2022, 12: 1058660. | [20] | Li N, Huang YM, Cai WB, et al. Advances in the study of the sensitivity of Plasmodium falciparum todihydroartemisinin-piperaquine[J]. J Pathog Biol, 2017, 12(10): 1025-1027. (in Chinese) | | (李娜, 黄亚铭, 蔡文斌, 等. 恶性疟原虫对双氢青蒿素-哌喹敏感性研究进展[J]. 中国病原生物学杂志, 2017, 12(10): 1025-1027.) | [21] | Zhao H, Xiang Z, Zhou LC, et al. Research progress of amodiaquine as an antimalarial drug[J]. Chin J Parasitol Parasit Dis, 2022, 40(6): 786-791. (in Chinese) | | (赵卉, 向征, 周隆参, 等. 阿莫地喹作为抗疟药的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 786-791.) | [22] | Hanboonkunupakarn B, Tarning J, Pukrittayakamee S, et al. Artemisinin resistance and malaria elimination: where are we now?[J]. Front Pharmacol, 2022, 13: 876282. | [23] | Urbán P, Fernàndez-Busquets X. Nanomedicine against malaria[J]. Curr Med Chem, 2014, 21(5): 605-629. | [24] | Gujjari L, Kalani H, Pindiprolu SK, et al. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria[J]. Parasite Epidemiol Control, 2022, 17: e00244. | [25] | Guasch-Girbau A, Fernàndez-Busquets X. Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies[J]. Pharmaceutics, 2021, 13(12): 2189. | [26] | Joshi MC, Egan TJ. Quinoline containing side-chain antimalarial analogs: recent advances and therapeutic application[J]. Curr Top Med Chem, 2020, 20(8): 617-697. | [27] | Faidallah HM, Panda SS, Serrano JC, et al. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates[J]. Bioorg Med Chem, 2016, 24(16): 3527-3539. | [28] | Kalita J, Chetia D, Rudrapal M. Design, synthesis, antimalarial activity and docking study of 7-chloro-4- (2-(substituted benzylidene)hydrazineyl)quinolines[J]. Med Chem, 2020, 16(7): 928-937. | [29] | Guo ZR. Transformation of old drugs: a radical antimalarial drug tafenocil[J]. Acta Pharm Sin, 2022, 57(11): 3446-3450. (in Chinese) | | (郭宗儒. 老药改造: 根治性的抗疟药他非诺奎[J]. 药学学报, 2022, 57(11): 3446-3450.) | [30] | Llanos-Cuentas A, Lacerda MVG, Hien TT, et al. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria[J]. N Engl J Med, 2019, 380(3): 229-241. | [31] | Zhan YL, Wu YS, Xu FF, et al. A novel dihydroxylated derivative of artemisinin from microbial transformation[J]. Fitoterapia, 2017, 120: 93-97. | [32] | Tafenoquine, LiverTox: clinical and research information on drug-induced liver injury[R]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. | [33] | Summers RL, Pasaje CFA, Pisco JP, et al. Chemogenomics identifies acetyl-coenzyme a synthetase as a target for malaria treatment and prevention[J]. Cell Chem Biol, 2022, 29(2): 191-201.e8. | [34] | Knecht W, Loffler M. Inhibition and localization of human and rat dihydroorotate dehydrogenase[J]. Adv Exp Med Biol, 2000, 486: 267-270. | [35] | Hartuti ED, Sakura T, Tagod MSO, et al. Identification of 3, 4-dihydro-2H, 6H-pyrimido[1, 2-c][1, 3]benzothiazin-6-imine derivatives as novel selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase[J]. Int J Mol Sci, 2021, 22(13): 7236. | [36] | Cheng X, Song ZH, Wang X, et al. A network pharmacology study on the molecular mechanism of protocatechualdehyde in the treatment of diabetic cataract[J]. Drug Des Devel Ther, 2021, 15: 4011-4023. | [37] | Li RX, Ling DZ, Tang TK, et al. Discovery of novel Plasmodium falciparum HDAC1 inhibitors with dual-stage antimalarial potency and improved safety based on the clinical anticancer drug candidate quisinostat[J]. J Med Chem, 2021, 64(4): 2254-2271. | [38] | Surur AS, Huluka SA, Mitku ML, et al. Indole: the after next scaffold of antiplasmodial agents?[J]. Drug Des Devel Ther, 2020, 14: 4855-4867. | [39] | Dangi P, Jain R, Mamidala R, et al. Natural product inspired novel indole based chiral scaffold kills human malaria parasites via ionic imbalance mediated cell death[J]. Sci Rep, 2019, 9(1): 17785. | [40] | Chavchich M, van Breda K, Rowcliffe K, et al. The spiroindolone KAE609 does not induce dormant ring stages in Plasmodium falciparum parasites[J]. Antimicrob Agents Chemother, 2016, 60(9): 5167-5174. | [41] | Marin GE, Neag MA, Burlacu CC, et al. The protective effects of nutraceutical components in methotrexate: induced toxicity models-an overview[J]. Microorganisms, 2022, 10(10): 2053. | [42] | White NJ, Pukrittayakamee S, Hien TT, et al. Malaria[J]. Lancet, 2014, 383(9918): 723-735. | [43] | Chughlay MF, El Gaaloul M, Donini C, et al. Chemoprotective antimalarial activity of P218 against Plasmodium falciparum: a randomized, placebo-controlled volunteer infection study[J]. Am J Trop Med Hyg, 2021, 104(4): 1348-1358. | [44] | Mayinger P. Phosphoinositides and vesicular membrane traffic[J]. Biochim Biophys Acta, 2012, 1821(8): 1104-1113. | [45] | McNamara CW, Lee MC, Lim CS, et al. Targeting Plasmodium phosphatidylinositol 4-kinase to eliminate malaria[J]. Nature, 2013, 504(7479): 248-253. | [46] | Paquet T, Le MC, Cabrera DG, et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase[J]. Sci Transl Med, 2017, 9(387). | [47] | Kundu M, Dutta A, Roy KK, et al. Identification of 5-(3-(methylsulfonyl)phenyl)-3-(4-(methylsulfonyl)phenyl)-3H-imidazo[4, 5-b]pyridine as novel orally bioavailable and metabolically stable antimalarial compound for further exploration[J]. Chem Biol Drug Des, 2023, 101(3): 690-695. | [48] | Ursing J, Schmidt BA, Lebbad M, et al. Chloroquine resistant P. falciparum prevalence is low and unchanged between 1990 and 2005 in Guinea-Bissau: an effect of high chloroquine dosage?[J]. Infect Genet Evol, 2007, 7(5): 555-561. | [49] | Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2014, 371(5): 411-423. | [50] | D'Alessandro U. Progress in the development of piperaquine combinations for the treatment of malaria[J]. Curr Opin Infect Dis, 2009, 22(6): 588-592. | [51] | Kay K, Hodel EM, Hastings IM. Altering antimalarial drug regimens may dramatically enhance and restore drug effectiveness[J]. Antimicrob Agents Chemother, 2015, 59(10): 6419-6427. | [52] | Achan J, Talisuna AO, Erhart A, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria[J]. Malar J, 2011, 10: 144. | [53] | Tan KR, Magill AJ, Parise ME, et al. Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis[J]. Am J Trop Med Hyg, 2011, 84(4): 517-531. | [54] | Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity[J]. Int J Parasitol, 2002, 32(13): 1655-1660. | [55] | Tanneru N, Nivya MA, Adhikari N, et al. Plasmodium DDI1 is a potential therapeutic target and important chromatin-associated protein[J]. Int J Parasitol, 2023, 53(3): 157-175. | [56] | WHO Guidelines Approved by the Guidelines Review Committee. WHO Guidelines for malaria[R]. Geneva: WHO, 2022. | [57] | Attaher O, Zaidi I, Kwan JL, et al. Effect of seasonal malaria chemoprevention on immune markers of exhaustion and regulation[J]. J Infect Dis, 2020, 221(1): 138-145. | [58] | Aregawi M, Smith SJ, Sillah-Kanu M, et al. Impact of the mass drug administration for malaria in response to the ebola outbreak in Sierra Leone[J]. Malar J, 2016, 15: 480. | [59] | Nikiema S, Soulama I, Sombié S, et al. Seasonal malaria chemoprevention implementation: effect on malaria incidence and immunity in a context of expansion of P. falciparum resistant genotypes with potential reduction of the effectiveness in sub-saharan Africa[J]. Infect Drug Resist, 2022, 15: 4517-4527. | [60] | Ni SJ. The COVID-19 epidemic increases the global burden of malaria[N]. Acta Scientiae Sinica, 2021-12-10( 003). (in Chinese) | | (倪思洁. 新冠肺炎疫情加重全球疟疾负担[N]. 中国科学报, 2021-12-10 (003).) | [61] | Lopes EA, Santos MMM, Mori M. Antimalarial drugs: what's new in the patents?[J]. Expert Opin Ther Pat, 2023, 33(3): 151-168. | [62] | Ambroise-Thomas P. The tragedy caused by fake antimalarial drugs[J]. Mediterr J Hematol Infect Dis, 2012, 4(1): e2012027. | [63] | Phyo AP, Von Seidlein L. Challenges to replace ACT as first-line drug[J]. Malar J, 2017, 16(1): 296. |
|