[1] | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2): e00075-18. | [2] | Gao HJ, Pang HS, Sun XD, et al. Effect of persistent infection with Echinococcus multilocularis on liver fibrosis in mice[J]. Chin J Schisto Control, 2021, 33(1): 54-61. (in Chinese) | | (高海军, 庞华胜, 孙旭冬, 等. 泡球蚴持续感染对小鼠肝脏纤维化的影响[J]. 中国血吸虫病防治杂志, 2021, 33(1): 54-61.) | [3] | Zhang CY, Yuan WG, He P, et al. Liver fibrosis and hepatic stellate cells: etiology, pathological hallmarks and therapeutic targets[J]. World J Gastroenterol, 2016, 22(48): 10512-10522. | [4] | Cohen S. Lipid droplets as organelles[J]. Int Rev Cell Mol Biol, 2018, 337: 83-110. | [5] | Sun ZQ, Gong JY, Wu LZ, et al. Imaging lipid droplet fusion and growth[J]. Methods Cell Biol, 2013, 116: 253-268. | [6] | Hou XL, Li DW, Shi Y, et al. Changes of ST2+ T cell subset function and their immune checkpoint molecule expression in the peritoneal cavity of mice infected with Echinococcoccus multilocularis[J]. Chin J Parasitol Parasit Dis, 2022, 40(6): 708-716. (in Chinese) | | (侯昕伶, 李德伟, 施阳, 等. 多房棘球蚴感染小鼠腹腔ST2+ T细胞亚群功能及其免疫检查点分子表达变化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 708-716.) | [7] | Liang L, Zhang J, Shen YJ, et al. Cyclic guanosine monophosphate-adenosine monophosphate promotes liver egg granuloma formation and fibrosis in mice infected with Schistosoma japonicum[J]. Chin J Parasitol Parasit Dis, 2022, 40(4): 441-445, 453. (in Chinese) | | (梁乐, 张璟, 沈玉娟, 等. 环鸟苷酸腺苷酸促日本血吸虫感染小鼠肝虫卵肉芽肿形成及纤维化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 441-445, 453.) | [8] | Farese Jr RV, Walther TC. Lipid droplets finally get a little R-E-S-P-E-C-T[J]. Cell, 2009, 139(5): 855-860. | [9] | Sun H, Wang XK, Peng ZG. The life cycle and function of intracellular lipid droplets[J]. Prog Physiol Sci, 2022, 53(4): 247-253. (in Chinese) | | (孙韩, 王学凯, 彭宗根. 细胞内脂滴的生命周期和功能[J]. 生理科学进展, 2022, 53(4): 247-253.) | [10] | Koizume S, Miyagi Y. Lipid droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia[J]. Int J Mol Sci, 2016, 17(9): 1430. | [11] | Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism[J]. Int J Cell Biol, 2012, 2012: 282041. | [12] | Hashemi HF, Goodman JM. The life cycle of lipid droplets[J]. Curr Opin Cell Biol, 2015, 33: 119-124. | [13] | Romanauska A, K?hler A. The inner nuclear membrane is a metabolically active territory that generates nuclear lipid droplets[J]. Cell, 2018, 174(3): 700-715.e18. | [14] | Singh R, Kaushik S, Wang YJ, et al. Autophagy regulates lipid metabolism[J]. Nature, 2009, 458(7242): 1131-1135. | [15] | Hernández-Gea V, Hilscher M, Rozenfeld R, et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy[J]. J Hepatol, 2013, 59(1): 98-104. | [16] | Tuohetahuntila M, Molenaar MR, Spee B, et al. Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation[J]. J Biol Chem, 2017, 292(30): 12436-12448. | [17] | Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 137-155 | [18] | Vanni S. Intracellular lipid droplets: from structure to function[J]. Lipid Insights, 2017, 10: 1178635317745518. | [19] | Cao DP, Shamsan E, Jiang BF, et al. Structural changes and expression of hepatic fibrosis-related proteins in coculture of Echinococcus multilocularis protoscoleces and human hepatic stellate cells[J]. Parasit Vectors, 2021, 14(1): 593. | [20] | Chen F, Yan B, Ren J, et al. FIT2 organizes lipid droplet biogenesis with ER tubule-forming proteins and septins[J]. J Cell Biol, 2021, 220(5): e201907183. | [21] | Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121: 27-42. |
|