[1] | Rollinson D, Knopp S, Levitz S, et al. Time to set the agenda for schistosomiasis elimination[J]. Acta Trop, 2013, 128(2): 423-440. | [2] | 金嘉宁, 党辉, 张利娟, 等. 2016年全国血吸虫病监测点疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2017(6): 542-548. | [3] | 关周, 吕山, 李石柱, 等. 我国流动人口血吸虫病流行现状及防控挑战[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(6): 598-603. | [4] | Lenna S, Trojanowska M.The role of endoplasmic reticulum stress and the unfolded protein response in fibrosis[J]. Curr Opin Rheumato, 2012, 24(6): 663-668. | [5] | Colley DG, Bustinduy AL, Secor WE, et al. Human schistosomiasis[J]. Lancet, 2014, 383(9936): 2253-2264. | [6] | Colley DG, Secor WE.Immunology of human schistosomiasis[J]. Parasite Immuno, 2014, 36(8): 347-357. | [7] | Karsdal MA, Manon-Jensen T, Genovese F, et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(10): G807-830. | [8] | Higashi T, Friedman SL, Hoshida Y.Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121: 27-42. | [9] | Huang Y, Huang D, Weng J, et al. Effect of reversine on cell cycle, apoptosis, and activation of hepatic stellate cells[J]. Mol Cell Biochem, 2016, 423(1-2): 9-20. | [10] | Ellis EL, Mann DA.Clinical evidence for the regression of liver fibrosis[J]. J Hepatol, 2012, 56(5): 1171-1180. | [11] | Friedman SL.Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[J]. Physiol Rev, 2008, 88(1): 125-172. | [12] | Hong F, Tuyama A, Lee TF, et al. Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation[J]. Hepatology, 2009, 49(6): 2055-2067. | [13] | Seki E, De Minicis S, Gwak GY, et al. CCR1 and CCR5 promote hepatic fibrosis in mice[J]. J Clin Invest, 2009, 119(7): 1858-1870. | [14] | Liang YJ, Luo J, Lu Q, et al. Gene profile of chemokines on hepatic stellate cells of schistosome-infected mice and antifibrotic roles of CXCL9/10 on liver non-parenchymal cells[J]. PLoS One, 2012, 7(8): e42490. | [15] | Nakatsumi H, Matsumoto M, Nakayama KI.Noncanonical pathway for regulation of CCL2 expression by an mTORC1-FOXK1 axis promotes recruitment of tumor-associated Macrophages[J]. Cell Rep, 2017, 21(9): 2471-2486. | [16] | Xing Y, Tian Y, Kurosawa T, et al. CCL11-induced eosinophils inhibit the formation of blood vessels and cause tumor necrosis[J]. Genes Cells, 2016, 21(6): 624-638. | [17] | Zhang YL, Han DH, Kim DY, et al. Role of interleukin-17A on the chemotactic responses to CCL7 in a murine allergic rhinitis model[J]. PLoS One, 2017, 12(1): e0169353. | [18] | He X, Pu G, Tang R, et al. Activation of NF-κB in the hepatic stellate cells of mice with Schistosomiasis japonica[J]. PLoS One, 2014, 9(8): e104323. | [19] | Zhang S, Wang Z, Zhu J, et al. Carnosic acid alleviates BDL-induced liver fibrosis through miR-29b-3p-mediated inhibition of the high-mobility group box 1/Toll-like receptor 4 signaling pathway in rats[J]. Front Pharmacol, 2017, 8: 976. | [20] | Wen Z, Ji X, Tang J, et al. Positive feedback regulation between transglutaminase 2 and Toll-like receptor 4 signaling in hepatic stellate cells correlates with liver fibrosis post Schistosoma japonicum infection[J]. Front Immunol, 2017, 8: 1808. | [21] | Wang W, Xiao F, Wan P, et al. EV71 3D protein binds with NLRP3 and enhances the assembly of inflammasome complex[J]. PLoS Pathog, 2017, 13(1): e1006123. | [22] | Wree A, Eguchi A, McGeough MD, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice[J]. Hepatology, 2014, 59(3): 898-910. | [23] | Heindryckx F, Binet F, Ponticos M, et al. Endoplasmic reticulum stress enhances fibrosis through IRE1a-mediated degradation of miR-150 and XBP-1 splicing[J]. EMBO Mol Med, 2016, 8(7): 729-744. | [24] | Mridha AR, Wree A, Robertson AAB, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice[J]. J Hepatol, 2017, 66(5): 1037-1046. | [25] | 温镇成, 季小芳, 林桂莹, 等. 肝组织中NLRP3炎症小体活化与日本血吸虫感染小鼠肝纤维化程度的相关性[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(4): 322-326. | [26] | Meng N, Xia M, Lu Y Q, et al. Activation of NLRP3 inflammasomes in mouse hepatic stellate cells during Schistosoma J. infection[J]. Oncotarget, 2016, 7(26): 39316-39331. | [27] | Lu YQ, Zhong S, Meng N, et al. NLRP3 inflammasome activation results in liver inflammation and fibrosis in mice infected with Schistosoma japonicum in a syk-dependent manner[J]. Sci Rep, 2017, 7(1): 8120. | [28] | Gao WY, Li D, Cai DE, et al. Hepatitis B virus X protein sensitizes HL-7702 cells to oxidative stress-induced apoptosis through modulation of the mitochondrial permeability transition pore[J]. Oncol Rep, 2017, 37(1): 48-56. | [29] | Cao Z, Fang Y, Lu Y, et al. Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome[J]. J Pineal Res, 2017, 62(3). | [30] | Wang Y, Zhang Z, Wang X, et al. Amelioration of ethanol-induced hepatitis by magnesium Isoglycyrrhizinate through inhibition of neutrophil cell infiltration and oxidative damage[J]. Mediators Inflamm, 2017, 2017: 3526903. | [31] | Mello T, Zanieri F, Ceni E, et al. Oxidative stress in the healthy and wounded hepatocyte: a cellular organelles perspective[J]. Oxid Med Cell Longev, 2016, 2016: 8327410. | [32] | Luangmonkong T, Suriguga S, Mutsaers HAM, et al. Targeting oxidative stress for the treatment of liver fibrosis[J]. Rev Physiol Biochem Pharmacol, 2018, 175: 71-102. | [33] | Crosas-Molist E, Fabregat I.Role of NADPH oxidases in the redox biology of liver fibrosis[J]. Redox Biol, 2015, 6: 106-111. | [34] | He P, Wu Y, Shun J, et al. Baicalin ameliorates liver injury induced by chronic plus binge ethanol feeding by modulating oxidative stress and inflammation via CYP2E1 and NRF2 in mice [J]. Oxid Med Cell Longev, 2017, 2017: 4820414. | [35] | Ma J, Li M, Kalavagunta PK, et al. Protective effects of cichoric acid on H2O2-induced oxidative injury in hepatocytes and larval zebrafish models[J]. Biomed Pharmacother, 2018, 104: 679-685. | [36] | Lu C, Zou Y, Liu Y, et al. Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant system[J]. Toxicol Appl Pharmacol, 2017, 318: 69-78. | [37] | Wang M, Abais JM, Meng N, et al. Upregulation of cannabinoid receptor-1 and fibrotic activation of mouse hepatic stellate cells during Schistosoma J. infection: role of NADPH oxidase[J]. Free Radic Biol Med, 2014, 71: 109-120. | [38] | Wang Q, Chou X, Guan F, et al. Enhanced Wnt signalling in hepatocytes is associated with Schistosoma japonicum infection and contributes to liver fibrosis[J]. Sci Rep, 2017, 7(1): 230. | [39] | Sun X, Zhang L, Wang J, et al. Schistosoma japonicum protein SjP40 inhibits TGF-β1-induced activation of hepatic stellate cells[J]. Parasitol Res, 2015, 114(11): 4251-4257. | [40] | McHugh D, Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues[J]. J Cell Biol, 2018, 217(1): 65-77. | [41] | Zhang J, Wang M, Zhang Z, et al. Celecoxib derivative OSU-03012 inhibits the proliferation and activation of hepatic stellate cells by inducing cell senescence[J]. Mol Med Rep, 2015, 11(4): 3021. | [42] | Chen J, Xu T, Zhu D, et al. Egg antigen p40 of Schistosoma japonicum promotes senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway[J]. Cell Death Dis, 2016, 7(7): e2315. | [43] | Xu T, Chen J, Zhu D, et al. Egg antigen p40 of Schistosoma japonicum promotes senescence in activated hepatic stellate cells via SKP2/P27 signaling pathway[J]. Sci Rep, 2017, 7(1): 275. | [44] | Yang X, Feng L, Zhang Y, et al. Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes[J]. Ecotoxicol Environ Saf, 2018, 161: 198-207. | [45] | Illanes SE, Maisey K, Sandoval M, et al. Fas ligand(+) fallopian tube epithelium induces apoptosis in both Fas receptor(+) T lymphocytes and endometrial cells[J]. Fertil Steril, 2013, 100(2): 550-560 e3. | [46] | Luo T, Zhang H, Yu Q, et al. ERK1/2 MAPK promotes autophagy to suppress ER stress-mediated apoptosis induced by cadmium in rat proximal tubular cells[J]. Toxicol In Vitro, 2018, 52: 60-69. | [47] | Duan Y, Gu X, Zhu D, et al. Schistosoma japonicum soluble egg antigens induce apoptosis and inhibit activation of hepatic stellate cells: a possible molecular mechanism[J]. Int J Parasitol, 2014, 44(3-4): 217-224. | [48] | Wang J, Xu F, Zhu D, et al. Schistosoma japonicum soluble egg antigens facilitate hepatic stellate cell apoptosis by downregulating Akt expression and upregulating p53 and DR5 expression[J]. PLoS Negl Trop Dis, 2014, 8(8): e3106. |
|