中国寄生虫学与寄生虫病杂志 ›› 2022, Vol. 40 ›› Issue (1): 88-93.doi: 10.12140/j.issn.1000-7423.2022.01.013
收稿日期:
2021-05-18
修回日期:
2021-07-02
出版日期:
2022-02-28
发布日期:
2022-01-06
通讯作者:
胡媛
作者简介:
高元(1996-),女,硕士研究生,从事寄生虫感染免疫机制研究。E-mail: gyuan1028@126.com
基金资助:
GAO Yuan(), HU Yuan*(), CAO Jian-ping
Received:
2021-05-18
Revised:
2021-07-02
Online:
2022-02-28
Published:
2022-01-06
Contact:
HU Yuan
Supported by:
摘要:
血吸虫病是一种广泛流行的人兽共患寄生虫病。日本血吸虫感染后,虫卵可沉积于宿主的肝脏,形成肉芽肿进而引起肝纤维化,严重者可发展成肝硬化。近年来研究发现,免疫细胞在血吸虫病肝纤维化过程中扮演重要角色。如T辅助性17细胞、γδ T细胞和树突状细胞等促进血吸虫病肝纤维化,调节性T细胞、自然杀伤细胞等抑制肝纤维化,而B细胞、巨噬细胞及自然杀伤T细胞可能发挥双重调节作用。本文就不同免疫细胞在血吸虫病肝纤维化中的作用机制进行综述。
中图分类号:
高元, 胡媛, 曹建平. 免疫细胞对血吸虫病肝纤维化作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 88-93.
GAO Yuan, HU Yuan, CAO Jian-ping. Research progress on the role of immune cells in liver fibrosis due to schistosomiasis[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(1): 88-93.
[1] |
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990—2017: a systematic analysis for the global burden of disease study 2017[J]. Lancet, 2018, 392(10159): 1789-1858.
doi: 10.1016/S0140-6736(18)32279-7 |
[2] | McManus DP, Bergquist R, Cai P, et al. Schistosomiasis-from immunopathology to vaccines[J]. Semin Immunopathol, 2020, 43(3): 355-371. |
[3] | Zhang LJ, Xu ZM, Yang F, et al. Endemic status of schistosomiasis in People’s Republic of China in 2020[J]. Chin J Schisto Control, 2021, 33(3): 225-233. (in Chinese) |
(张利娟, 徐志敏, 杨帆, 等. 2020年全国血吸虫病疫情通报[J]. 中国血吸虫病防治杂志, 2021, 33(3): 225-233.) | |
[4] | Wang Y. Post-transmission schistosomiasis: the problem of hepatic fibrosis[J]. Chin J Parasitol Parasit Dis, 2015, 33(6): 404-406. (in Chinese) |
(王勇. 后血吸虫病传播阻断阶段: 肝纤维化问题[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6): 404-406.) | |
[5] |
Schwartz C, Fallon PG. Schistosoma “eggs-iting” the host: granuloma formation and egg excretion[J]. Front Immunol, 2018, 9: 2492.
doi: 10.3389/fimmu.2018.02492 |
[6] |
Zheng B, Zhang JQ, Chen H, et al. T lymphocyte-mediated liver immunopathology of schistosomiasis[J]. Front Immunol, 2020, 11: 61.
doi: 10.3389/fimmu.2020.00061 pmid: 32132991 |
[7] |
Tebeje BM, Harvie M, You H, et al. T cell-mediated immunity in CBA mice during Schistosoma japonicum infection[J]. Exp Parasitol, 2019, 204: 107725.
doi: 10.1016/j.exppara.2019.107725 |
[8] |
Wang B, Liang S, Wang Y, et al. Th17 down-regulation is involved in reduced progression of schistosomiasis fibrosis in ICOSL KO mice[J]. PLoS Negl Trop Dis, 2015, 9(1): e0003434.
doi: 10.1371/journal.pntd.0003434 |
[9] | Nady S, Esmat G. IL-17 induced the recruitment and functional activity of granulocytes isolated from patients coinfected with Schistosoma mansoni and hepatitis C virus[J]. Egypt J Immunol, 2017, 24(1): 9-20. |
[10] |
Yang Q, Qu JL, Jin CX, et al. Schistosoma japonicum infection promotes the response of Tfh cells through down-regulation of caspase-3-mediating apoptosis[J]. Front Immunol, 2019, 10: 2154.
doi: 10.3389/fimmu.2019.02154 |
[11] |
Dell’Aringa M, Reinhardt RL. Notch signaling represents an important checkpoint between follicular T-helper and canonical T-helper 2 cell fate[J]. Mucosal Immunol, 2018, 11(4): 1079-1091.
doi: 10.1038/s41385-018-0012-9 |
[12] |
Chen X, Xu Z, Wei C, et al. Follicular helper T cells recruit eosinophils into host liver by producing CXCL12 during Schistosoma japonicum infection[J]. J Cell Mol Med, 2020, 24(4): 2566-2572.
doi: 10.1111/jcmm.v24.4 |
[13] |
Wang Y, Lin C, Cao Y, et al. Up-regulation of interleukin-21 contributes to liver pathology of schistosomiasis by driving GC immune responses and activating HSCs in mice[J]. Sci Rep, 2017, 7(1): 16682.
doi: 10.1038/s41598-017-16783-7 |
[14] |
Zhang Y, Jiang Y, Wang Y, et al. Higher frequency of circulating PD-1 (high) CXCR5(+)CD4(+) Tfh cells in patients with chronic schistosomiasis[J]. Int J Biol Sci, 2015, 11(9): 1049-1055.
doi: 10.7150/ijbs.12023 |
[15] |
Zhang Y, Wang Y, Jiang Y, et al. T follicular helper cells in patients with acute schistosomiasis[J]. Parasit Vectors, 2016, 9(1): 321.
doi: 10.1186/s13071-016-1602-6 |
[16] |
Zhan T, Zhang T, Wang Y, et al. Dynamics of Th9 cells and their potential role in immunopathogenesis of murine schistosomiasis[J]. Parasit Vectors, 2017, 10(1): 305.
doi: 10.1186/s13071-017-2242-1 |
[17] |
Li L, Xie H, Wang M, et al. Characteristics of IL-9 induced by Schistosoma japonicum infection in C57BL/6 mouse liver[J]. Sci Rep, 2017, 7(1): 2343.
doi: 10.1038/s41598-017-02422-8 |
[18] |
Zhan T, Ma H, Jiang S, et al. Interleukin-9 blockage reduces early hepatic granuloma formation and fibrosis during Schistosoma japonicum infection in mice[J]. Immunology, 2019, 158(4): 296-303.
doi: 10.1111/imm.v158.4 |
[19] |
Barreto AV, Lacerda GA, Figueiredo AL, et al. Evaluation of serum levels of IL-9 and IL-17 in human Schistosoma mansoni infection and their relationship with periportal fibrosis[J]. Immunobiology, 2016, 221(12): 1351-1354.
doi: 10.1016/j.imbio.2016.07.014 |
[20] |
Tang CL, Yang J, Cheng LY, et al. Anti-CD25 monoclonal antibody enhances the protective efficacy of Schistosoma japonicum GST vaccine via inhibition of CD4+CD25+Foxp3+ regulatory T cells[J]. Parasitol Res, 2017, 116(10): 2727-2732.
doi: 10.1007/s00436-017-5581-0 |
[21] |
Christiansen D, Mouhtouris E, Hodgson R, et al. Antigen-specific CD4+CD25+ T cells induced by locally expressed ICOS-Ig: the role of Foxp3, perforin, granzyme B and IL-10: an experimental study[J]. Transpl Int, 2019, 32(11): 1203-1215.
doi: 10.1111/tri.13474 pmid: 31225919 |
[22] | Zheng L, Hu Y, Wang YJ, et al. Recruitment of neutrophils mediated by Vγ2γδ T cells deteriorates liver fibrosis induced by Schistosoma japonicum infection in C57BL/6 mice[J]. Infect Immun, 2017, 85(8): e01020-16. |
[23] |
Sun L, Gong W, Shen Y, et al. IL-17A-producing gammadelta T cells promote liver pathology in acute murine schistosomiasis[J]. Parasit Vectors, 2020, 13(1): 334.
doi: 10.1186/s13071-020-04200-4 |
[24] |
Gonzalez-Polo V, Pucci-Molineris M, Cervera V, et al. Group 2 innate lymphoid cells exhibit progressively higher levels of activation during worsening of liver fibrosis[J]. Ann Hepatol, 2019, 18(2): 366-372.
doi: S1665-2681(19)30016-X pmid: 31053540 |
[25] |
Lei Z, Tang R, Qi Q, et al. Hepatocyte CD1d protects against liver immunopathology in mice with schistosomiasis japonica[J]. Immunology, 2021, 162(3): 328-338.
doi: 10.1111/imm.v162.3 |
[26] | Sun T, Li G, Chen MJ, et al. Change of the Vα24 NKT cells in peripheral blood of the patients with advanced schistosomiasis and its relation to the degree of hepatic fibrosis[J]. Chin J Parasitol Parasit Dis, 2014, 32(5): 348-351. (in Chinese) |
(孙婷, 李刚, 陈茂剑, 等. 晚期血吸虫病患者外周血Vα24自然杀伤T细胞的变化及其与肝纤维化程度的关系[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(5): 348-351.) | |
[27] |
Hegde P, Weiss E, Paradis V, et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver[J]. Nat Commun, 2018, 9(1): 2146.
doi: 10.1038/s41467-018-04450-y |
[28] |
Böttcher K, Rombouts K, Saffioti F, et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation[J]. Hepatology, 2018, 68(1): 172-186.
doi: 10.1002/hep.29782 pmid: 29328499 |
[29] |
Xiao J, Guan F, Sun L, et al. B cells induced by Schistosoma japonicum infection display diverse regulatory phenotypes and modulate CD4(+) T cell response[J]. Parasit Vectors, 2020, 13(1): 147.
doi: 10.1186/s13071-020-04015-3 |
[30] |
Mwinzi PN, Ganley-Leal L, Black CL, et al. Circulating CD23+ B cell subset correlates with the development of resistance to Schistosoma mansoni reinfection in occupationally exposed adults who have undergone multiple treatments[J]. J Infect Dis, 2009, 199(2): 272-279.
doi: 10.1086/597213 |
[31] |
Yong L, Tang Y, Ren C, et al. B1 cells protect against Schistosoma japonicum-induced liver inflammation and fibrosis by controlling monocyte infiltration[J]. PLoS Negl Trop Dis, 2019, 13(6): e0007474.
doi: 10.1371/journal.pntd.0007474 |
[32] |
Dai YC, Zhong J, Xu JF. Regulatory B cells in infectious disease (review)[J]. Mol Med Rep, 2017, 16(1): 3-10.
doi: 10.3892/mmr.2017.6605 |
[33] |
Haeberlein S, Obieglo K, Ozir-Fazalalikhan A, et al. Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells[J]. PLoS Pathog, 2017, 13(7): e1006539.
doi: 10.1371/journal.ppat.1006539 |
[34] |
Ndlovu H, Nono JK, Abdel AN, et al. Interleukin-4 receptor alpha expressing B cells are essential to down-modulate host granulomatous inflammation during schistosomasis[J]. Front Immunol, 2018, 9: 2928.
doi: 10.3389/fimmu.2018.02928 |
[35] |
Souza COS, Gardinassi LG, Rodrigues V, et al. Monocyte and macrophage-mediated pathology and protective immunity during schistosomiasis[J]. Front Microbiol, 2020, 11: 1973.
doi: 10.3389/fmicb.2020.01973 |
[36] | He X, Tang R, Sun Y, et al. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis[J]. EBio Medicine, 2016, 13: 339-347. |
[37] |
Zheng S, Zhang P, Chen Y, et al. Inhibition of notch signaling attenuates schistosomiasis hepatic fibrosis via blocking macrophage M2 polarization[J]. PLoS One, 2016, 11(11): e0166808.
doi: 10.1371/journal.pone.0166808 |
[38] |
Song E, Ouyang N, Hörbelt M, et al. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts[J]. Cell Immunol, 2000, 204(1): 19-28.
pmid: 11006014 |
[39] |
Kaisar MMM, Ritter M, Del FC, et al. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses[J]. PLoS Biol, 2018, 16(4): e2005504.
doi: 10.1371/journal.pbio.2005504 |
[40] |
Liu JY, Lu P, Hu LZ, et al. CD8α-DC is the major DC subset which mediates inhibition of allergic responses by Schistosoma infection[J]. Parasite Immunol, 2014, 36(12): 647-657.
doi: 10.1111/pim.12134 pmid: 25099746 |
[41] |
Lundie RJ, Webb LM, Marley AK, et al. A central role for hepatic conventional dendritic cells in supporting Th2 responses during helminth infection[J]. Immunol Cell Biol, 2016, 94(4): 400-410.
doi: 10.1038/icb.2015.114 |
[42] |
Ndlovu H, Nono JK, Nieuwenhuizen NE, et al. IL-4Rα-expressing CD11c+ cells contribute to driving optimal cellular responses during Schistosoma mansoni infection in mice[J]. J Leukoc Biol, 2019, 105(2): 307-316.
doi: 10.1002/jlb.2019.105.issue-2 |
[43] |
Kalantari P, Bunnell SC, Stadecker MJ. The C-type lectin receptor-driven, Th17 cell-mediated severe pathology in schistosomiasis: not all immune responses to helminth parasites are Th2 dominated[J]. Front Immunol, 2019, 10: 26.
doi: 10.3389/fimmu.2019.00026 pmid: 30761125 |
[44] |
Xu L, Xue B, Zhou L, et al. NP30 stimulates Th17 differentiation through DC in Schistosomiasis japonicum[J]. Parasite Immunol, 2018, 40(5): e12528.
doi: 10.1111/pim.2018.40.issue-5 |
[45] |
Klaver EJ, Kuijk LM, Lindhorst TK, et al. Schistosoma mansoni soluble egg antigens induce expression of the negative regulators SOCS1 and SHP1 in human dendritic cells via interaction with the mannose receptor[J]. PLoS One, 2015, 10(4): e0124089.
doi: 10.1371/journal.pone.0124089 |
[46] |
Forkel M, Berglin L, Kekäläinen E, et al. Composition and functionality of the intrahepatic innate lymphoid cell-compartment in human nonfibrotic and fibrotic livers[J]. Eur J Immunol, 2017, 47(8): 1280-1294.
doi: 10.1002/eji.v47.8 |
[47] |
Wijaya RS, Read SA, Schibeci S, et al. KLRG1+ natural killer cells exert a novel antifibrotic function in chronic hepatitis B[J]. J Hepatol, 2019, 71(2): 252-264.
doi: S0168-8278(19)30182-5 pmid: 30905683 |
[48] |
Hou X, Yu F, Man S, et al. Negative regulation of Schistosoma japonicum egg-induced liver fibrosis by natural killer cells[J]. PLoS Negl Trop Dis, 2012, 6(1): e1456.
doi: 10.1371/journal.pntd.0001456 |
[49] |
Hu Y, Wang XL, Wei YH, et al. Functional inhibition of natural killer cells in a BALB/c mouse model of liver fibrosis induced by Schistosoma japonicum infection[J]. Front Cell Infect Microbiol, 2020, 10: 598987.
doi: 10.3389/fcimb.2020.598987 |
[50] | Wu QW, Zhu X, Fu X, et al. Expression of Tim-3 on peripheral CD56+ NK cells and its correlation with liver fibrosis in patients with advanced schistosomiasis[J]. Chin J Parasitol Parasit Dis, 2015, 33(5): 346-350. (in Chinese) |
(武其文, 朱翔, 付夏, 等. 晚期血吸虫病患者外周血NK细胞Tim-3分子的表达及其与肝纤维化指标的关系[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(5): 346-350.) | |
[51] |
Wan MJ, Han JW, Ding LL, et al. Novel immune subsets and related cytokines: emerging players in the progression of liver fibrosis[J]. Front Med, 2021, 8: 604894.
doi: 10.3389/fmed.2021.604894 |
[1] | 李睿, 虞莹莹, 卓婉君, 杨寿旺, 陈林碧, 黄奕树. 外籍人员输入性埃及血吸虫病1例[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(4): 547-549. |
[2] | 苏雅馨, 江楠, 章孝成, 王莹, 蒋小凤, 霍乐乐, 王雅雪, 曹建平, 沈玉娟. 多房棘球蚴感染小鼠外周血中髓源抑制性细胞比例动态变化及细胞因子表达研究[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 211-216. |
[3] | 赵磊, 李佳, 莫刚, 李醇, 黄国洋, 彭小红. 华支睾吸虫感染对小鼠肝纤维化和免疫调节功能的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 760-765. |
[4] | 李天星, 张家明, 徐晨曦, 王子戈, 郭晶洁, 李姗. 基于网络药理学探讨复方鳖甲软肝片治疗华支睾吸虫感染所致肝纤维化的机制[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 510-515. |
[5] | 李婕, 文雨松, 李召军. 我国旅游开发对血吸虫病防治的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 355-360. |
[6] | 陈琳, 朱继峰, 邱竞帆, 徐志鹏, 张东辉, 陈璐, 何健, 李伟, 杨坤, 季旻珺. 寓全健康理念于血吸虫病防控虚拟仿真项目建设[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 81-84. |
[7] | 蒋小凤, 沈玉娟. 棘球蚴感染致肝纤维化的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 656-660. |
[8] | 冯家鑫, 公衍峰, 罗卓韦, 汪伟, 曹淳力, 许静, 李石柱. 我国血吸虫病防治策略的科学基础与“十四五”展望[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 428-435. |
[9] | 陈兵, 张国莉, 张高红. 血吸虫病候选疫苗临床研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 511-515. |
[10] | 章孝成, 高元, 胡媛, 曹建平. 日本血吸虫感染小鼠脾多核型髓源抑制细胞变化的初步研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 330-336. |
[11] | 高元, 章孝成, 胡媛, 曹建平. 自然杀伤细胞抑制血吸虫病肝纤维化作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 168-174. |
[12] | 张雅兰, 蒋甜甜, 贺志权, 邓艳, 陈伟奇, 朱岩昆, 张红卫, 赵东阳. 小鼠感染肝毛细线虫肝脏microRNA的差异表达分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 56-60. |
[13] | 郭苏影, 祝红庆, 曹淳力, 邓王平, 鲍子平, 贾铁武, 李银龙, 吕超, 秦志强, 张利娟, 冯婷, 杨帆, 吕山, 许静, 李石柱. 2020年长江中下游地区洪涝灾害后血吸虫病传播风险评估[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 753-758. |
[14] | 施亮, 熊春蓉, 刘毛毛, 魏秀参, 张键锋, 王鑫瑶, 王涛, 杭德荣, 羊海涛, 杨坤. 基于深度学习技术的湖北钉螺视觉智能识别模型效能评价[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 764-770. |
[15] | 马文梅, 桑伟, 艾麦提·牙森, 佐力克, 付莉, 苗娜. 核因子-κB/髓样分化分子88在细粒棘球蚴病患者肝纤维化中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 779-783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||