[1] | Leta S, Beyene TJ, De Clercq EM, et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus[J]. Int J Infect Dis, 2018, 67: 25-35. | [2] | Milner DA Jr. Malaria pathogenesis[J]. Cold Spring Harb Perspect Med, 2018, 8(1): a025569. | [3] | Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue[J]. Nature, 2013, 496(7446): 504-507. | [4] | Wu P, Yu X, Wang PH, et al. Arbovirus lifecycle in mosquito: acquisition, propagation and transmission[J]. Expert Rev Mol Med, 2019, 21: e1. | [5] | Dormont L, Bessière JM, Cohuet A. Human skin volatiles: a review[J]. J Chem Ecol, 2013, 39(5): 569-578. | [6] | Elena De Obaldia M, Morita T, Dedmon LC, et al. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels[J]. Cell, 2022, 185(22): 4099-4116.e13. | [7] | Zhang H, Zhu YB, Liu ZW, et al. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness[J]. Cell, 2022, 185(14): 2510-2522.e16. | [8] | Gallagher M, Wysocki CJ, Leyden JJ, et al. Analyses of volatile organic compounds from human skin[J]. Br J Dermatol, 2008, 159(4): 780-791. | [9] | Amann A, deL Costello B, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. J Breath Res, 2014, 8(3): 034001. | [10] | Bernier UR, Kline DL, Barnard DR, et al. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti)[J]. Anal Chem, 2000, 72(4): 747-756. | [11] | Karunagaran M, Ramani P, Gheena S, et al. Volatile organic compounds in human breath[J]. Indian J Dent Res, 2022, 33(1): 100-104. | [12] | Wahl HG, Hoffmann A, Luft D, et al. Analysis of volatile organic compounds in human urine by headspace gas chromatography-mass spectrometry with a multipurpose sampler[J]. J Chromatogr A, 1999, 847(1/2): 117-125. | [13] | Llambrich M, Brezmes J, Cumeras R. The untargeted urine volatilome for biomedical applications: methodology and volatilome database[J]. Biol Proced Online, 2022, 24(1): 20. | [14] | Probert CS, Reade S, Ahmed I. Fecal volatile organic compounds: a novel, cheaper method of diagnosing inflammatory bowel disease?[J]. Expert Rev Clin Immunol, 2014, 10(9): 1129-1131. | [15] | No?l F, Piérard-Franchimont C, Piérard GE, et al. Sweaty skin, background and assessments[J]. Int J Dermatol, 2012, 51(6): 647-655. | [16] | Taylor D, Daulby A, Grimshaw S, et al. Characterization of the microflora of the human axilla[J]. Int J Cosmet Sci, 2003, 25(3): 137-145. | [17] | Penn DJ, Oberzaucher E, Grammer K, et al. Individual and gender fingerprints in human body odour[J]. J R Soc Interface, 2007, 4(13): 331-340. | [18] | Verhulst NO, Andriessen R, Groenhagen U, et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria[J]. PLoS One, 2010, 5(12): e15829. | [19] | Verhulst NO, Qiu YT, Beijleveld H, et al. Composition of human skin microbiota affects attractiveness to malaria mosquitoes[J]. PLoS One, 2011, 6(12): e28991. | [20] | Natsch A, Derrer S, Flachsmann F, et al. A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type[J]. Chem Biodivers, 2006, 3(1): 1-20. | [21] | Curran AM, Prada PA, Furton KG. The differentiation of the volatile organic signatures of individuals through SPME-GC/MS of characteristic human scent compounds[J]. J Forensic Sci, 2010, 55(1): 50-57. | [22] | Buszewski B, Kesy M, Ligor T, et al. Human exhaled air analytics: biomarkers of diseases[J]. Biomed Chromatogr, 2007, 21(6): 553-566. | [23] | Libardoni M, Stevens PT, Waite JH, et al. Analysis of human breath samples with a multi-bed sorption trap and comprehensive two-dimensional gas chromatography (GCxGC)[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2006, 842(1): 13-21. | [24] | Miekisch W, Schubert JK, Noeldge-Schomburg GFE. Diagnostic potential of breath analysis: focus on volatile organic compounds[J]. Clin Chimica Acta, 2004, 347(1/2): 25-39. | [25] | Ma W, Liu XY, Pawliszyn J. Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration[J]. Anal Bioanal Chem, 2006, 385(8): 1398-1408. | [26] | Mills GA, Walker V. Headspace solid-phase microextraction profiling of volatile compounds in urine: application to metabolic investigations[J]. J Chromatogr B Biomed Sci Appl, 2001, 753(2): 259-268. | [27] | Smith S, Burden H, Persad R, et al. A comparative study of the analysis of human urine headspace using gas chromatography-mass spectrometry[J]. J Breath Res, 2008, 2(3): 037022. | [28] | de Lacy Costello BPJ, Ledochowski M, Ratcliffe NM. The importance of methane breath testing: a review[J]. J Breath Res, 2013, 7(2): 024001. | [29] | Gibson GR, MacFarlane GT, Cummings JH. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine[J]. Gut, 1993, 34(4): 437-439. | [30] | Pleil JD, Stiegel MA, Risby TH. Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders[J]. J Breath Res, 2013, 7(1): 017107. | [31] | Kischkel S, Miekisch W, Sawacki A, et al. Breath biomarkers for lung cancer detection and assessment of smoking related effects: confounding variables, influence of normalization and statistical algorithms[J]. Clin Chimica Acta, 2010, 411(21/22): 1637-1644. | [32] | Probert CJ, Jones PH, Ratcliffe NM. A novel method for rapidly diagnosing the causes of diarrhoea[J]. Gut, 2004, 53(1): 58-61. | [33] | Poli DA, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study[J]. Respir Res, 2005, 6(1): 71. | [34] | Phillips M, Cataneo RN, Greenberg J, et al. Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress[J]. J Lab Clin Med, 2000, 136(3): 243-249. | [35] | Wang GD, Vega-Rodríguez J, Diabate A, et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating[J]. Science, 2021, 371(6527): 411-415. | [36] | Kashiwagi GA, von Oppen S, Harburguer L, et al. The main component of the scent of Senecio madagascariensis flowers is an attractant for Aedes aegypti (L.) (Diptera : Culicidae) mosquitoes[J]. Bull Entomol Res, 2022, 112(6): 837-846. | [37] | Arbaoui AA, Chua TH. Bacteria as a source of oviposition attractant for Aedes aegypti mosquitoes[J]. Trop Biomed, 2014, 31(1): 134-142. | [38] | Logan JG, Birkett MA, Clark SJ, et al. Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes[J]. J Chem Ecol, 2008, 34(3): 308-322. | [39] | Harraca V, Ryne C, Birgersson G, et al. Smelling your way to food: can bed bugs use our odour?[J]. J Exp Biol, 2012, 215(Pt 4): 623-629. | [40] | Smallegange RC, Qiu YT, Bukovinszkiné-Kiss G, et al. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto[J]. J Chem Ecol, 2009, 35(8): 933-943. | [41] | Pitts RJ, Derryberry SL, Zhang ZW, et al. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids[J]. Sci Rep, 2017, 7: 40297. | [42] | Acree F Jr, Turner RB, Gouck HK, et al. L-Lactic acid: a mosquito attractant isolated from humans[J]. Science, 1968, 161(3848): 1346-1347. | [43] | Allan SA, Bernier UR, Kline DL. Attraction of mosquitoes to volatiles associated with blood[J]. J Vector Ecol, 2006, 31(1): 71-78. | [44] | MacWilliam D, Kowalewski J, Kumar A, et al. Signaling mode of the broad-spectrum conserved CO2 receptor is one of the important determinants of odor valence in Drosophila[J]. Neuron, 2018, 97(5): 1153-1167.e4. | [45] | Turner SL, Li N, Guda T, et al. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes[J]. Nature, 2011, 474(7349): 87-91. | [46] | van Loon JJA, Smallegange RC, Bukovinszkiné-Kiss G, et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles[J]. J Chem Ecol, 2015, 41(6): 567-573. | [47] | Verhulst NO, Beijleveld H, Knols BG, et al. Cultured skin microbiota attracts malaria mosquitoes[J]. Malar J, 2009, 8: 302. | [48] | Lacey ES, Cardé RT. Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3-D flight analysis in a wind tunnel[J]. Med Vet Entomol, 2011, 25(1): 94-103. | [49] | Tauxe GM, MacWilliam D, Boyle SM, et al. Targeting a dual detector of skin and CO2 to modify mosquito host seeking[J]. Cell, 2013, 155(6): 1365-1379. | [50] | Robinson A, Busula AO, Voets MA, et al. Plasmodium-associated changes in human odor attract mosquitoes[J]. Proc Natl Acad Sci USA, 2018, 115(18): E4209-E4218. |
|