[1] | Burnard D,, Shao RF. Mitochondrial genome analysis reveals intraspecific variation within Australian hard tick species[J]. Ticks Tick Borne Dis, 2019, 10(3): 677-681. | [2] | Wang TH,, Zhang SQ,, Pei TW, et al. Tick mitochondrial genomes: structural characteristics and phylogenetic implications[J]. Parasit Vectors, 2019, 12(1): 451. | [3] | Esser HJ,, Herre EA,, Blüthgen N, et al. Host specificity in a diverse Neotropical tick community: an assessment using quantitative network analysis and host phylogeny[J]. Parasit Vectors, 2016, 9(1): 372. | [4] | Burger TD,, Shao RF,, Barker SC. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species[J]. Mol Phylogenet Evol, 2014, 76: 241-253. | [5] | Zhuang L,, Sun Y,, Cui XM, et al. Transmission of severe fever with thrombocytopenia syndrome virus by Haemaphysalis longicornis ticks, China[J]. Emerg Infect Dis, 2018, 24(5): 868-871. | [6] | Beati L,, Keirans JE. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari ∶ Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters[J]. J Parasitol, 2001, 87(1): 32-48. | [7] | Li ZB,, Yao GM,, Luo W, et al. Genetic variation and phylogenetic evolution of Haemaphysalis flava from different geographical areas in China[J]. China Animal Husb & Vet Med, 2021, 48(6): 2150-2159. (in Chinese) | [7] | ( 李中波,, 尧国民,, 罗维, 等. 不同地区褐黄血蜱的基因变异及遗传进化分析[J]. 中国畜牧兽医, 2021, 48(6): 2150-2159.) | [8] | Simon C,, Buckley TR,, Frati F, et al. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA[J]. Annu Rev Ecol Evol Syst, 2006, 37: 545-579. | [9] | Sun ET,, Li CP,, Nie LW, et al. The complete mitochondrial genome of the brown leg mite, Aleuroglyphus ovatus (Acari ∶ Sarcoptiformes): evaluation of largest non-coding region and unique tRNAs[J]. Exp Appl Acarol, 2014, 64(2): 141-157. | [10] | Yuan ML,, Wei DD,, Zhang K, et al. Genetic diversity and population structure of Panonychus citri (Acari ∶ Tetranychidae), in China based on mitochondrial COⅠ gene sequences[J]. J Econ Entomol, 2010, 103(6): 2204-2213. | [11] | De AK,, Muthiyan R,, Ponraj P, et al. Mitogenome analysis of Indian isolate of Rhipicephalus microplus clade A sensu (Burger et al.,2014): a first report from Maritime South-East Asia[J]. Mitochondrion, 2019, 49: 135-148. | [12] | Ji XF,, Wu XB,, Li Y, et al. The mitochondrial genome of Crocodylus niloticus with implications for phylogenetic relationships among crocodilian species[J]. Acta Zool Sin, 2006, 52(4): 810-818. (in Chinese) | [12] | ( 季学峰,, 吴孝兵,, 李艳, 等. 尼罗鳄线粒体基因组全序列分析及鳄类系统发生关系的探讨[J]. 动物学报, 2006, 52(4): 810-818.) | [13] | Liang S,, Hu SS,, Zhou J, et al. Sequencing and analysis of mitochondrial genome in new Zealand white rabbit[J]. Genom Appl Biol, 2021, 40(1): 28-33. (in Chinese) | [13] | ( 梁爽,, 胡帅帅,, 周娟, 等. 新西兰白兔线粒体基因组全序列的测定与分析[J]. 基因组学与应用生物学, 2021, 40(1): 28-33.) | [14] | Xie AX,, Wu QC,, Li SD, et al. Complete sequence cloning and bioinformatics analysis of Sichuan sheldrake duck mitochondrial genome[J]. Chin J Animal Vet Sci, 2017, 48(3): 436-445. (in Chinese) | [14] | ( 谢艾轩,, 吴启超,, 李思德, 等. 四川麻鸭mtDNA全序列的克隆和生物信息学分析[J]. 畜牧兽医学报, 2017, 48(3): 436-445.) | [15] | Zhang DX,, Hewitt GM. Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies[J]. Biochem Syst Ecol, 1997, 25(2): 99-120. | [16] | Wolstenholme DR. Animal mitochondrial DNA: structure and evolution[J]. Int Rev Cytol, 1992, 141: 173-216. | [17] | Arndt A,, Smith MJ. Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria[J]. Mol Biol Evol, 1998, 15(8): 1009-1016. | [18] | Umeda S,, Tang Y,, Okamoto M, et al. Both heavy strand replication origins are active in partially duplicated human mitochondrial DNAs[J]. Biochem Biophys Res Commun, 2001, 286(4): 681-687. | [19] | Shao R,, Aoki Y,, Mitani H, et al. The mitochondrial genomes of soft ticks have an arrangement of genes that has remained unchanged for over 400 million years[J]. Insect Mol Biol, 2004, 13(3): 219-224. |
|