[1] | Alvarez Rojas CA,, Romig T,, Lightowlers MW. Echinococcus granulosus sensu lato genotypes infecting humans: review of current knowledge[J]. Int J Parasitol, 2014, 44(1): 9-18. | [2] | McManus DP. Current status of the genetics and molecular taxonomy of Echinococcus species[J]. Parasitology, 2013, 140(13): 1617-1623. | [3] | Grubor NM,, Jovanova-Nesic KD,, Shoenfeld Y. Liver cystic echinococcosis and human host immune and autoimmune follow-up: a review[J]. World J Hepatol, 2017, 9(30): 1176-1189. | [4] | Zhou XJ,, Wang W,, Cui F, et al. Myeloid-derived suppressor cells exert immunosuppressive function on the T helper 2 in mice infected with Echinococcus granulosus[J]. Exp Parasitol, 2020, 215: 107917. | [5] | Lindau D,, Gielen P,, Kroesen M, et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells[J]. Immunology, 2013, 138(2): 105-115. | [6] | Vetsika EK,, Koukos A,, Kotsakis A. Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer[J]. Cells, 2019, 8(12): 1647. | [7] | Parker KH,, Beury DW,, Ostrand-Rosenberg S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment[J]. Adv Cancer Res, 2015, 128:95-139. | [8] | Mills CD,, Kincaid K,, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000, 164(12): 6166-6173. | [9] | Mosser DM,, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12):958-969. | [10] | Funes SC,, Rios M,, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity[J]. Immunology, 2018, 154(2): 186-195. | [11] | Gordon SR,, Maute RL,, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499. | [12] | Biswas S,, Mandal G,, Roy Chowdhury S, et al. Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-polarized macrophages in breast cancer[J]. J Immunol, 2019, 203(12): 3447-3460. | [13] | Xu QG,, Wang WH,, Zhu B, et al. Optimal conditions for the expansion of mouse myeloid-derived suppressor cells in vitro[J]. Curr Immunol, 2015, 35(2): 140-144. (in Chinese) | [13] | (许秋桂,, 王文红,, 朱波, 等. 小鼠髓样抑制细胞体外扩增体系的建立[J]. 现代免疫学, 2015, 35(2): 140-144.) | [14] | Fan WX,, Diao YJ,, Ma YY, et al. Comparison of ultracentrifugation and membrane based-affinity column methods in exosome isolation from supernatants of prostate cancer cells[J]. J Mod Lab Med, 2019, 34(3): 6-9. (in Chinese) | [14] | (范维肖,, 刁艳君,, 马越云, 等. 超速离心法与QIAGEN膜亲和柱法提取前列腺癌细胞培养上清外泌体的方法学比较[J]. 现代检验医学杂志, 2019, 34(3): 6-9.) | [15] | Sun YT,, Cao JP,, Shen YJ. Research progress on immunosuppressive function of myeloid-derived suppressor cells and its role in parasitic infection[J]. Chin J Parasitol Parasit Dis, 2021, 39 (4): 505-513. (in Chinese) | [15] | (孙叶挺,, 曹建平,, 沈玉娟. 髓源抑制性细胞免疫抑制功能及其在寄生虫感染领域的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 505-513.) | [16] | E WJ,, Lu YL,, Zhang LQ, et al. Characteristics and clinical value of macrophage polarization in tissues and serum of patients with hepatic alveolar echinocococosis[J]. J Pract Med, 2020, 36(9): 1198-1202. (in Chinese) | [16] | (鄂维建,, 芦永良,, 张灵强, 等. 肝泡型包虫病肝组织和血清中巨噬细胞极化特点及临床意义[J]. 实用医学杂志, 2020, 36(9): 1198-1202.) | [17] | Zhang XF,, Gong WC,, Cao SK, et al. Dynamic changes of myeloid-derived suppressor cells and regulatory T cells in livers of mice infected with Echinococcus granulosus[J]. Chin J Schisto Control, 2019, 31(6): 622-627. (in Chinese) | [17] | (张小凡,, 巩文词,, 曹胜魁, 等. 细粒棘球绦虫感染小鼠肝脏髓源抑制性细胞与调节性T细胞比例动态变化[J]. 中国血吸虫病防治杂志, 2019, 31(6): 622-627.) | [18] | Pritchard A,, Tousif S,, Wang Y, et al. Lung tumor cell-derived exosomes promote M2 macrophage polarization[J]. Cells, 2020, 9(5): 1303. | [19] | Santos GB,, Monteiro KM,, da Silva ED, et al. Excretory/secretory products in the Echinococcus granulosus metacestode: is the intermediate host complacent with infection caused by the larval form of the parasite?[J]. Int J Parasitol, 2016, 46(13/14): 843-856. | [20] | Siles-Lucas M,, Sánchez-Ovejero C,, González-Sánchez M, et al. Isolation and characterization of exosomes derived from fertile sheep hydatid cysts[J]. Vet Parasitol, 2017, 236: 22-33. | [21] | Van Ginderachter JA, Beschin A,, de Baetselier P, et al. Myeloid-derived suppressor cells in parasitic infections[J]. Eur J Immunol, 2010, 40(11): 2976-2985. | [22] | Loke P,, MacDonald AS,, Allen JE. Antigen-presenting cells recruited by Brugia malayi induce Th2 differentiation of naïve CD4+ T cells[J]. Eur J Immunol, 2000, 30(4): 1127-1135. | [23] | Kong YY,, Fuchsberger M,, Xiang SD, et al. Myeloid derived suppressor cells and their role in diseases[J]. Curr Med Chem, 2013, 20(11): 1437-1444. |
|