中国寄生虫学与寄生虫病杂志 ›› 2022, Vol. 40 ›› Issue (1): 20-27.doi: 10.12140/j.issn.1000-7423.2022.01.003
收稿日期:
2021-12-07
修回日期:
2022-01-05
出版日期:
2022-02-28
发布日期:
2022-02-11
通讯作者:
程训佳
作者简介:
荆雯雯(1983-),女,博士,青年副研究员,从事病原生物学研究。E-mail: wenwenjing@fudan.edu.cn
基金资助:
JING Wen-wen(), CHENG Xun-jia*(
)
Received:
2021-12-07
Revised:
2022-01-05
Online:
2022-02-28
Published:
2022-02-11
Contact:
CHENG Xun-jia
Supported by:
摘要:
近年来我国人群寄生虫感染率呈逐年下降的趋势,然而在世界范围内,寄生虫病仍然是人类生命健康的重要威胁,这也给我国输入性寄生虫病防治带来了严峻的挑战。对寄生虫感染及时、准确的检测是寄生虫病防控的关键,对患者的临床救治也具有重要的意义。提升寄生虫感染检测能力的关键是检测技术的不断创新与应用。本文从多学科交叉的角度概述了寄生虫感染检测中的常用及新型检测技术,并展望未来可能应用到寄生虫感染检测中的新技术,以期为增加可提升我国寄生虫感染的检测能力的方式提供参考。
中图分类号:
荆雯雯, 程训佳. 多学科交叉新型检测技术在寄生虫感染诊断中的应用和展望[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 20-27.
JING Wen-wen, CHENG Xun-jia. Application and prospect of multidisciplinary new detection technology in the diagnosis of parasite infections[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(1): 20-27.
[1] | Feng J, Zhang L, Tu H, et al. From elimination to post-elimination: characteristics, challenges and re-transmission preventing strategy of imported malaria in China[J]. Chin Trop Med, 2021, 21(1): 5-10. (in Chinese) |
(丰俊, 张丽, 涂宏, 等. 从消除到消除后: 中国输入性疟疾的疫情特征、挑战及防止再传播策略[J]. 中国热带医学, 2021, 21(1): 5-10.) | |
[2] |
Zhou XN. China declared malaria-free: a milestone in the world malaria eradication and Chinese public health[J]. Infect Dis Poverty, 2021, 10: 98.
doi: 10.1186/s40249-021-00882-9 |
[3] | World Health Organization. World malaria report 2021[R]. Geneva: WHO, 2021. |
[4] |
Muhseen ZT, Hameed AR, Al-Bhadly O, et al. Natural products for treatment of Plasmodium falciparum malaria: an integrated computational approach[J]. Comput Biol Med, 2021, 134: 104415.
doi: 10.1016/j.compbiomed.2021.104415 pmid: 33910128 |
[5] |
Punsawad C, Phasuk N, Bunratsami S, et al. Prevalence of intestinal parasitic infection and associated risk factors among village health volunteers in rural communities of southern Thailand[J]. BMC Public Health, 2017, 17(1): 564.
doi: 10.1186/s12889-017-4486-2 |
[6] | Kesete Y, Tesfahiwet H, Fessehaye G, et al. Assessment of prevalence and risk factors for intestinal parasitosis, malnutrition and anemia among school children in Ghindae area, Eritrea[J]. J Trop Med, 2020: 4230260. |
[7] |
Kalinga AK, Mgata S, Kavishe RA, et al. Implementation of external quality assessment of microscopy for improved parasite detection and confirmatory diagnosis of malaria in Tanzanian military health facilities[J]. BMC Res Notes, 2020, 13(1): 447.
doi: 10.1186/s13104-020-05290-0 pmid: 32948227 |
[8] |
Lo NC, Gupta R, Addiss DG, et al. Comparison of World Health Organization and demographic and health surveys data to estimate sub-national deworming coverage in pre-school aged children[J]. PLoS Negl Trop Dis, 2020, 14(8): e0008551.
doi: 10.1371/journal.pntd.0008551 |
[9] | Cen QF, Sun ML, Bi SS. Development of automatic blood smear maker and experiment[J]. Chin Med Devices, 2018, 33(10): 41-44, 53. (in Chinese) |
(岑启锋, 孙明磊, 毕树生. 自动血涂片制备机的研制与实验[J]. 中国医疗设备, 2018, 33(10): 41-44, 53.) | |
[10] |
Wong LW, Ong KS, Goh CBS, et al. Extremely low prevalence in soil-transmitted helminth infections among a multi-ethnic community in Segamat, Malaysia[J]. J Parasit Dis, 2021, 45(2): 313-318.
doi: 10.1007/s12639-020-01334-1 |
[11] |
Bechir M, Schelling E, Hamit MA, et al. Parasitic infections, anemia and malnutrition among rural settled and mobile pastoralist mothers and their children in Chad[J]. EcoHealth, 2012, 9(2): 122-131.
doi: 10.1007/s10393-011-0727-5 pmid: 22160444 |
[12] |
Punsawad C, Phasuk N, Thongtup K, et al. Prevalence of parasitic contamination of raw vegetables in Nakhon Si Thammarat Province, southern Thailand[J]. BMC Public Health, 2019, 19(1): 34.
doi: 10.1186/s12889-018-6358-9 |
[13] |
Oliveira WJ, Magalhães FDC, Elias AMS, et al. Evaluation of diagnostic methods for the detection of intestinal schistosomiasis in endemic areas with low parasite loads: Saline gradient, Helmintex, Kato-Katz and rapid urine test[J]. PLoS Negl Trop Dis, 2018, 12(2): e0006232.
doi: 10.1371/journal.pntd.0006232 |
[14] |
Bosch F, Palmeirim MS, Ali SM, et al. Diagnosis of soil-transmitted helminths using the Kato-Katz technique: what is the influence of stirring, storage time and storage temperature on stool sample egg counts?[J]. PLoS Negl Trop Dis, 2021, 15(1): e0009032.
doi: 10.1371/journal.pntd.0009032 |
[15] |
Li JQ, Wang ZZ, Karim MR, et al. Detection of human intestinal protozoan parasites in vegetables and fruits: a review[J]. Parasite Vector, 2020, 13(1): 380.
doi: 10.1186/s13071-020-04255-3 |
[16] |
Manser M, Granlund M, Edwards H, et al. Detection of Cryptosporidium and Giardia in clinical laboratories in Europe: a comparative study[J]. Clin Microbiol Infect, 2014, 20(1): O65-O71.
doi: 10.1111/1469-0691.12297 |
[17] |
Resende SD, Magalhães FC, Rodrigues-Oliveira JL, et al. Modulation of allergic reactivity in humans is dependent on Schistosoma mansoni parasite burden, low levels of IL-33 or TNF-α and high levels of IL-10 in serum[J]. Front Immunol, 2018, 9: 3158.
doi: 10.3389/fimmu.2018.03158 pmid: 30713536 |
[18] |
Andrade HM, Toledo VPCP, Pinheiro MB, et al. Evaluation of miltefosine for the treatment of dogs naturally infected with L. infantum (=L. chagasi) in Brazil[J]. Vet Parasitol, 2011, 181(2/3/4): 83-90.
doi: 10.1016/j.vetpar.2011.05.009 |
[19] |
Utzinger J, Becker SL, van Lieshout L, et al. New diagnostic tools in schistosomiasis[J]. Clin Microbiol Infect, 2015, 21(6): 529-542.
doi: 10.1016/j.cmi.2015.03.014 |
[20] | Bowman DD. Introduction[M]//Georgis’ Parasitology for veterinarians. Amsterdam: Elsevier, 2021: 1-9. |
[21] | Kalogeropoulos D, Sakkas H, Mohammed B, et al. Ocular toxoplasmosis: a review of the current diagnostic and therapeutic approaches[J]. Int Ophthalmol, 2021: 1-27. |
[22] | Jayasingh A, Rompicherla V, Radha RKN, et al. Comparative study of peripheral blood smear, rapid antigen detection, ELISA and PCR methods for diagnosis of malaria in a tertiary care centre[J]. J Clin Diagn Res, 2019, 13(1): DC8-DC11. |
[23] |
Roellig DM, Yoder JS, Madison-Antenucci S, et al. Community laboratory testing for Cryptosporidium: multicenter study retesting public health surveillance stool samples positive for Cryptosporidium by rapid cartridge assay with direct fluorescent antibody testing[J]. PLoS One, 2017, 12(1): e0169915.
doi: 10.1371/journal.pone.0169915 |
[24] |
Checkley W, White AC, Jaganath D, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium[J]. Lancet Infect Dis, 2015, 15(1): 85-94.
doi: 10.1016/S1473-3099(14)70772-8 pmid: 25278220 |
[25] |
Van den Bossche D, Cnops L, Verschueren J, et al. Comparison of four rapid diagnostic tests, ELISA, microscopy and PCR for the detection of Giardia lamblia, Cryptosporidium spp. and Entamoeba histolytica in feces[J]. J Microbiol Methods, 2015, 110: 78-84.
doi: 10.1016/j.mimet.2015.01.016 pmid: 25615719 |
[26] |
Oliveira R, Azevedo AS, Mendes L. Application of nucleic acid mimics in fluorescence in situ hybridization[J]. Methods Mol Biol, 2021, 2246: 69-86.
doi: 10.1007/978-1-0716-1115-9_5 pmid: 33576983 |
[27] | Chen YI, Sripati MP, Nguyen TD, et al. Recent developments in the characterization of nucleic acid hybridization kinetics[J]. Curr Opin Biomed Eng, 2021, 19: 100305. |
[28] |
Neves ES, Espíndola OM, Curi A, et al. PCR-based diagnosis is not always useful in the acute acquired toxoplasmosis in immunocompetent individuals[J]. Parasitol Res, 2021, 120(2): 763-767.
doi: 10.1007/s00436-020-07022-6 |
[29] |
Nadeem MF, Khattak AA, Zeeshan N, et al. Assessment of microscopic detection of malaria with nested polymerase chain reaction in war-torn federally administered tribal areas of Pakistan[J]. Acta Parasitol, 2021, 66(4): 1186-1192.
doi: 10.1007/s11686-021-00374-8 |
[30] |
Biswas PG, Ohari Y, Mohanta UK, et al. Development of a multiplex PCR method for discriminating between Heterakis gallinarum, H. beramporia, and H. indica parasites of poultry[J]. Vet Parasitol, 2021, 295: 109463.
doi: 10.1016/j.vetpar.2021.109463 pmid: 34023591 |
[31] |
Dilks CM, Hahnel SR, Sheng Q, et al. Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles[J]. Int J Parasitol Drugs Drug Resist, 2020, 14: 28-36.
doi: 10.1016/j.ijpddr.2020.08.003 |
[32] | Pandey SC, Gangola S, Kumar S, et al. DNA microarray analysis of Leishmania parasite: strengths and limitations[M]//Pathogenesis, treatment and prevention of leishmaniasis. Amsterdam: Elsevier, 2021: 85-101. |
[33] |
Massolo A, Gerber A, Umhang G, et al. Droplet digital PCR as a sensitive tool to assess exposure pressure from Echinococcus multilocularis in intermediate hosts[J]. Acta Trop, 2021, 223: 106078.
doi: 10.1016/j.actatropica.2021.106078 |
[34] |
Madison-Antenucci S, Relich RF, Doyle L, et al. Multicenter evaluation of BD max enteric parasite Real-Time PCR assay for detection of Giardia duodenalis, Cryptosporidium hominis, Cryptosporidium parvum, and Entamoeba histolytica[J]. J Clin Microbiol, 2016, 54(11): 2681-2688.
pmid: 27535690 |
[35] |
Zhan Z, Guo J, Xiao Y, et al. Comparison of BioFire FilmArray gastrointestinal panel versus Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for diarrheal pathogen detection in China[J]. Int J Infect Dis, 2020, 99: 414-420.
doi: 10.1016/j.ijid.2020.08.020 |
[36] | Leal SM Jr, Popowitch EB, Levinson KJ, et al. Quantitative thresholds enable accurate identification of Clostridium difficile infection by the luminex xTAG gastrointestinal pathogen panel[J]. J Clin Microbiol, 2018, 56(6): e01885-17. |
[37] | Kellner T, Parsons B, Chui LD, et al. Comparative evaluation of enteric bacterial culture and a molecular multiplex syndromic panel in children with acute gastroenteritis[J]. J Clin Microbiol, 2019, 57(6): e00205-19. |
[38] |
Ken Dror S, Pavlotzky E, Barak M. Evaluation of the NanoCHIP® gastrointestinal panel (GIP) test for simultaneous detection of parasitic and bacterial enteric pathogens in fecal specimens[J]. PLoS One, 2016, 11(7): e0159440.
doi: 10.1371/journal.pone.0159440 |
[39] |
Momčilović S, Cantacessi C, Arsić-Arsenijević V, et al. Rapid diagnosis of parasitic diseases: current scenario and future needs[J]. Clin Microbiol Infect, 2019, 25(3): 290-309.
doi: 10.1016/j.cmi.2018.04.028 |
[40] | Kubiak J, Davidson E, Soave R, et al. Colonization with gastrointestinal pathogens prior to hematopoietic cell transplantation and associated clinical implications[J]. Transplant Cell Ther, 2021, 27(6): 499.e1-499.e6. |
[41] |
Dirani G, Zannoli S, Paesini E, et al. EasyscreenTM enteric protozoa assay for the detection of intestinal parasites: a retrospective bi-center study[J]. J Parasitol, 2019, 105(1): 58-63.
doi: 10.1645/18-52 |
[42] |
Abbasi I, Kirstein OD, Hailu A, et al. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples[J]. Acta Trop, 2016, 162, 20-26.
doi: 10.1016/j.actatropica.2016.06.009 |
[43] |
Xu J, Rong R, Zhang H, et al. Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP)[J]. Int J Parasitol, 2020, 40(3): 327-331.
doi: 10.1016/j.ijpara.2009.08.010 |
[44] |
Chen M, Ai L, Zhang R, et al. Sensitive and rapid detection of Paragonimus westermani infection in humans and animals by loop-mediated isothermal amplification (LAMP)[J]. Parasitol Res, 2011, 108(5): 1193-1198.
doi: 10.1007/s00436-010-2162-x pmid: 21107864 |
[45] |
Besuschio SA, Picado A, Muñoz-Calderón A, et al. Trypanosoma cruzi loop-mediated isothermal amplification (Trypanosoma cruzi Loopamp) kit for detection of congenital, acute and Chagas disease reactivation[J]. PLoS Negl Trop Dis, 2020, 14(8): e0008402.
doi: 10.1371/journal.pntd.0008402 |
[46] |
Cammilleri G, Ferrantelli V, Pulvirenti A, et al. Validation of a commercial loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Anisakis spp. DNA in processed fish products[J]. Foods, 2020, 9(1): 92.
doi: 10.3390/foods9010092 |
[47] |
Zhang L, Gleason C. Loop-mediated isothermal amplification for the diagnostic detection of Meloidogyne chitwoodi and M. fallax[J]. Plant Dis, 2019, 103(1): 12-18.
doi: 10.1094/PDIS-01-18-0093-RE pmid: 30358508 |
[48] |
Kato Y, Yanagisawa T, Nakai M, et al. Direct and sensitive detection of a microsporidian parasite of bumblebees using loop-mediated isothermal amplification (LAMP)[J]. Sci Rep, 2020, 10(1): 1118.
doi: 10.1038/s41598-020-57909-8 |
[49] |
Sukphattanaudomchoke C, Siripattanapipong S, Thita T, et al. Simplified closed tube loop mediated isothermal amplification (LAMP) assay for visual diagnosis of Leishmania infection[J]. Acta Trop, 2020, 212: 105651.
doi: S0001-706X(20)31155-4 pmid: 32763231 |
[50] |
Crannell Z, Castellanos-Gonzalez A, Nair G, et al. Multiplexed recombinase polymerase amplification assay to detect intestinal protozoa[J]. Anal Chem, 2016, 88(3): 1610-1616.
doi: 10.1021/acs.analchem.5b03267 pmid: 26669715 |
[51] | Lalremruata A, Nguyen T, McCall M, et al. Recombinase polymerase amplification and lateral flow assay for ultrasensitive detection of low-density Plasmodium falciparum infection from controlled human malaria infection studies and naturally acquired infections[J]. J Clin Microbiol, 2020, 58(5): e01879-19. |
[52] | Khan M, Faisal K, Chowdhury R, et al. Evaluation of molecular assays to detect Leishmania donovani in Phlebotomus argentipes fed on post-kala-azar dermal leishmaniasis patients, Parasite Vector, 2021, 14(1): 465. |
[53] | Suzuki CTN, Gomes JF, Falcão AX, et al. Automated diagnosis of human intestinal parasites using optical microscopy images [C]//2013 IEEE 10th International Symposium on Biomedical Imaging. San Francisco: IEEE, 2013: 460-463. |
[54] |
Chen P, Sun W, He Y. Comparison of metagenomic next-generation sequencing technology, culture and GeneXpert MTB/RIF assay in the diagnosis of tuberculosis[J]. J Thorac Dis, 2020, 12(8): 4014-4024.
doi: 10.21037/jtd |
[55] |
Mor SM, Ascolillo LR, Nakato R, et al. Expectoration of Cryptosporidium parasites in sputum of human immunodeficiency virus-positive and-negative adults[J]. Am J Trop Med Hyg, 2018, 98(4): 1086-1090.
doi: 10.4269/ajtmh.17-0741 |
[56] |
Wang C, Li A, Shi Q, et al. Metagenomic next-generation sequencing clinches diagnosis of leishmaniasis[J]. Lancet, 2021, 397(10280): 1213.
doi: 10.1016/S0140-6736(21)00352-4 |
[57] |
Wilson MR, O’Donovan BD, Gelfand JM, et al. Chronic meningitis investigated via metagenomic next-generation sequencing[J]. JAMA Neurol, 2018, 75(8): 947-955.
doi: 10.1001/jamaneurol.2018.0463 |
[58] | Li R, Wang X, Sun Y, et al. Application of metagenomic next-generation sequencing in the diagnosis of imported malaria[J]. Int J Infect Dis, 2020, 101: 425. |
[59] |
Wang H, Lu Z, Bao Y, et al. Clinical diagnostic application of metagenomic next-generation sequencing in children with severe nonresponding pneumonia[J]. PLoS One, 2020, 15(6): e0232610.
doi: 10.1371/journal.pone.0232610 |
[60] |
Abedini-Nassab R. Nanotechnology and nanopore sequencing[J]. Recent Pat Nanotechnol, 2017, 11(1): 34-41.
doi: 10.2174/1872210510666160602152913 pmid: 27262629 |
[61] |
Wen CY, Zhang SL. Fundamentals and potentials of solid-state nanopores: a review[J]. J Phys D Appl Phys, 2020, 54(2): 023001.
doi: 10.1088/1361-6463/ababce |
[62] |
Wen C, Zeng S, Zhang Z, et al. Group behavior of nanoparticles translocating multiple nanopores[J]. Anal Chem, 2018, 90(22): 13483-13490.
doi: 10.1021/acs.analchem.8b03408 |
[63] |
Tang XM, Sui G, Cai Q, et al. Novel MnO/carbon composite anode material with multi-modal pore structure for high performance lithium-ion batteries[J]. J Mater Chem A, 2016, 4(6): 2082-2088.
doi: 10.1039/C5TA10073A |
[64] |
Yao Y, Wen CY, Pham NH, et al. On induced surface charge in solid-state nanopores[J]. Langmuir, 2020, 36(30): 8874-8882.
doi: 10.1021/acs.langmuir.0c01189 pmid: 32646217 |
[65] |
Zeng SS, Wen CY, Solomon P, et al. Rectification of protein translocation in truncated pyramidal nanopores[J]. Nat Nanotechnol, 2019, 14(11): 1056-1062.
doi: 10.1038/s41565-019-0549-0 |
[66] | Liu ZW, Wang YF, Deng T, et al. Solid-state nanopore-based DNA sequencing technology[J]. J Nanomater, 2016, 2016: 1-13. |
[67] |
He L, Tessier DR, Briggs K, et al. Digital immunoassay for biomarker concentration quantification using solid-state nanopores[J]. Nat Commun, 2021, 12(1): 5348.
doi: 10.1038/s41467-021-25566-8 |
[68] |
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308.
doi: 10.1038/nprot.2013.143 |
[69] |
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096.
doi: 10.1126/science.1258096 |
[70] |
Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nat Protoc, 2019, 14(10): 2986-3012.
doi: 10.1038/s41596-019-0210-2 pmid: 31548639 |
[71] |
Hajian R, Balderston S, Tran T, et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor[J]. Nat Biomed Eng, 2019, 3(6): 427-437.
doi: 10.1038/s41551-019-0371-x pmid: 31097816 |
[72] |
Lee RA, Puig H, Nguyen PQ, et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proc Natl Acad Sci USA, 2020, 117(41): 25722-25731.
doi: 10.1073/pnas.2010196117 |
[73] |
Gustafsson MG. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proc Natl Acad Sci USA, 2005, 102(37): 13081-13086.
doi: 10.1073/pnas.0406877102 |
[74] | Górriz M, Aparicio A, Raventós B, et al. Leishmaniasis parasite segmentation and classification using deep learning [C]//Articulated Motion and Deformable Objects. Palma de Mallorca: Springer, Cham, 2018: 53-62. |
[75] |
Jo Y, Park S, Jung J, et al. Holographic deep learning for rapid optical screening of Anthrax spores[J]. Sci Adv, 2017, 3(8): e1700606.
doi: 10.1126/sciadv.1700606 |
[76] |
Kraus F, Miron E, Demmerle J, et al. Quantitative 3D structured illumination microscopy of nuclear structures[J]. Nat Protoc, 2017, 12(5): 1011-1028.
doi: 10.1038/nprot.2017.020 |
[77] |
Rajaraman S, Antani SK, Poostchi M, et al. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images[J]. PeerJ, 2018, 6: e4568.
doi: 10.7717/peerj.4568 |
[78] |
Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710.
doi: 10.1038/s41586-019-1923-7 |
[79] |
Yu H, Jing WW, Iriya R, et al. Phenotypic antimicrobial susceptibility testing with deep learning video microscopy[J]. Anal Chem, 2018, 90(10): 6314-6322.
doi: 10.1021/acs.analchem.8b01128 |
[80] |
Akama K, Iwanaga N, Yamawaki K, et al. Wash-and amplification-free digital immunoassay based on single-particle motion analysis[J]. ACS Nano, 2019, 13(11): 13116-13126.
doi: 10.1021/acsnano.9b05917 |
[81] |
Rissin DM, Kan CW, Campbell TG, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nat Biotechnol, 2010, 28: 595-599.
doi: 10.1038/nbt.1641 pmid: 20495550 |
[82] |
Fischer SK, Joyce A, Spengler M, et al. Emerging technologies to increase ligand binding assay sensitivity[J]. AAPS J, 2015, 17: 93-101.
doi: 10.1208/s12248-014-9682-8 |
[83] |
Zhu L, Li G, Sun S, et al. Digital immunoassay of a prostate-specific antigen using gold nanorods and magnetic nanoparticles[J]. RSC Adv, 2017, 7: 27595-27602.
doi: 10.1039/C7RA00575J |
[84] |
Jing W, Wang Y, Yang Y, et al. Time-resolved digital immunoassay for rapid and sensitive quantitation of procalcitonin with plasmonic imaging[J]. ACS Nano, 2019, 13(8): 8609-8617.
doi: 10.1021/acsnano.9b02771 |
[1] | 李静, 杨树峰, 高文伟, 刘卿, 朱兴全, 郑文斌. 山西省晋中市猪刚地弓形虫的感染情况及基因型鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 367-371. |
[2] | 徐银, 刘婷, 徐慧, 曾小军, 兰炜明, 龚志红, 戴坤教, 邱婷婷, 郝先, 谢曙英. PCR-CRISPR/Cas12a华支睾吸虫囊蚴检测方法的建立和应用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 421-426. |
[3] | 孙叶挺, 曹建平, 沈玉娟. 髓源抑制性细胞免疫抑制功能及其在寄生虫感染领域的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 505-513. |
[4] | 刘毅, 蔡玉春, 陈韶红, 陈家旭. 自然杀伤T细胞在寄生虫感染免疫中作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(4): 477-481. |
[5] | 魏绮珮, 齐永芬, 鱼艳荣. 内质网应激在寄生虫感染中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(6): 617-622. |
[6] | 刘剑峰1,2,金小林1,2,杨坤1,2,徐金水3,钱益新1,2,颜维安1,2,扎西4,格桑卓嘎4,元旦旺姆4,张美4,李进辉4,羊海涛1,2*. 2014年拉萨市肠道寄生虫感染流行病学调查分析[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(5): 4-405-408. |
[7] | 张冬梅*. 热带传染病诊断技术的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6): 9-443-449. |
[8] | 孙蕊,吴忠道. 基质金属蛋白酶在寄生虫致脑部感染中的免疫病理作用[J]. 中国寄生虫学与寄生虫病杂志, 2010, 28(6): 14-468-473. |
[9] | 刘凡;尹慧彬;苏川. Th17 细胞在寄生虫感染免疫中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2008, 26(5): 14-386. |
[10] | . 河北省寄生虫病防治工作总结[J]. 中国寄生虫学与寄生虫病杂志, 1995, 13(S1): 86-88. |
[11] | . 在改革的新形势下,推动全民驱虫工作的体会[J]. 中国寄生虫学与寄生虫病杂志, 1995, 13(S1): 113-114. |
[12] | 庄火金,陈蕉香,方明亮. 163例阑尾寄生虫检查[J]. 中国寄生虫学与寄生虫病杂志, 1995, 13(1): 31-31. |
[13] | 王钊,徐淑惠. 序言[J]. 中国寄生虫学与寄生虫病杂志, 1994, 12(S1): 1-1. |
[14] | 余森海,许隆祺,蒋则孝,徐淑惠,韩家俊,朱育光,常江,林金祥,徐伏牛. 首次全国人体寄生虫分布调查总结[J]. 中国寄生虫学与寄生虫病杂志, 1994, 12(S1): 2-7. |
[15] | 张道强,唐小康. 贵州思南县人群肠道寄生虫感染情况的调查[J]. 中国寄生虫学与寄生虫病杂志, 1994, 12(S1): 64-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||