[1] | Hao W, Lucine V, Tuerhongjiang T, et al. Echinococcosis in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2): e00075-93. | [2] | Budke CM, Carabin H, Patrick CN, et al. A systematic review of the literature on cystic echinococcosis frequency worldwide and its associated clinical manifestations[J]. Am J Trop Med Hyg, 2013, 88(6): 1011-1027. | [3] | Craig PS, Larrieu E. Control of cystic echinococcosis/hydatidosis: 1863—2002[J]. Adv Parasitol, 2006, 61: 443-508. | [4] | Labsi M, Soufli I, Khelifi L, et al. In vivo treatment with IL-17A attenuates hydatid cyst growth and liver fibrogenesis in an experimental model of echinococcosis[J]. Acta Trop, 2018, 181: 6-10. | [5] | Hong KK, Gwak MJ, Song J, et al. NF-κB pathway activation and PTEN downregulation in psoriasis[J]. Br J Dermatol, 2016, 174(2): 433-435. | [6] | Tsuruta D. NF-kappaB links keratinocytes and lymphocytes in the pathogenesis of psoriasis[J]. Recent Pat Inflamm Allergy Drug Discov, 2009, 3(1): 40-48. | [7] | Ji R, Liang RW, Guan ZY, et al. The role of TLR4/NF-κB signaling pathway in Cryptosporidim parvum infection[J]. Chin J Parasitol Parasit Dis, 2018, 36(4): 361-365. (in Chinese) | [7] | (汲蕊, 梁瑞文, 管志玉, 等. TLR4/NF-κB信号通路在微小隐孢子虫感染中的作用机制[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4): 361-365.) | [8] | Wang S, Zhang Z, Wang Y, et al. Toxoplasma gondii excretory/secretory antigens (TgESAs) suppress pro-inflammatory cytokine secretion by inhibiting TLR-induced NF-κB activation in LPS-stimulated murine macrophages[J]. Oncotarget, 2017, 8(51): 88351-88359. | [9] | Zhang C, Shao Y, Yang S, et al. T-cell tolerance and exhaustion in the clearance of Echinococcus multilocularis: role of inoculum size in a quantitative hepatic experimental model[J]. Sci Rep, 2017, 7(1): 11153. | [10] | Lopez-Luis BA, Valdivia-Cayoja AR, Belaunzaran-Zamudio PF, et al. An immunocompromised patient & multiorgan cystic echinococcosis[J]. QJM-INT J MED, 2019, 112(3): 215-217. | [11] | Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment[J]. Science, 2015, 348(6230): 74-80. | [12] | Reynaert H, Thompson MG, Thomas T, et al. Hepatic stellate cells: roles in mivrovirulation and pathophysiology of portal hypertension[J]. Gat, 2002, 50: 571-581. | [13] | Dietrich GG, Gotze O, Geier A. Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance[J]. World J Gastroentrol, 2016, 22(1): 72-88. | [14] | Cai JY, Shao YX, Wang K, et al. Paeoniflorin inhibits activation of Raw 264.7 macrophages induced by high glucose via JAK2/STAT3 signaling pathway[J]. Chin Pharmacol Bull, 2019, 35(1): 56-62. (in Chinese) | [14] | (蔡建月, 邵云侠, 王坤, 等. 芍药苷通过JAK2/STAT3信号通路抑制高糖诱导的RAW264.7巨噬细胞激活[J]. 中国药理学通报, 2019, 35(1): 56-62.) | [15] | Zhong J, Wang H, Chen W, et al. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways[J]. Cell Death Dis, 2017, 8(5): e2763. | [16] | Nakano T, Fukuda D, Koga J, et al. Delta-Like ligand 4-Notch signaling in macrophage activation[J]. Arterioscler Thromb Vasc Biol, 2016, 36(10): 2038-2047. | [17] | Czimmerer Z, Daniel B, Horvath A, et al. The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages[J]. Immunity, 2018, 48(1): 75-90. | [18] | Sarah T, Dalila M, Zine-Charaf AT, et al. Potential role of NF-κB pathway in the immuno-inflammatory responses during human cystic echinococcosis[J]. Acta Trop, 2020, 203(8): 105306. | [19] | Caamano J, Hunter CA. NF-κB family of transcription factors: central regulators of innate and adaptive immune functions[J]. Clin Microbiol Rev, 2002, 15(3): 414-429. |
|