[1] | Moraga-Fernández A, Muñoz-Hernández C, Sánchez-Sánchez M, et al. Exploring the diversity of tick-borne pathogens: The case of bacteria (Anaplasma, Rickettsia, Coxiella and Borrelia) protozoa (Babesia and Theileria) and viruses (orthonairovirus, tick-borne encephalitis virus and louping ill virus) in the European Continent[J]. Vet Microbiol, 2023, 286: 109892. | [2] | 邵中军. 我国重要蜱传疾病及传播媒介研究概述[J]. 中华卫生杀虫药械, 2021, 27(4): 293-299. | | Shao ZJ. Overview of serious tick-borne diseases and vector ticks in China[J]. Chin J Hyg Insectic Equip, 2021, 27(4): 293-299. (in Chinese) | [3] | 向昱龙, 周敬祝, 刘英, 等. 贵州省部分地区蜱及其携带细菌调查[J]. 中国媒介生物学及控制杂志, 2022, 33(1): 148-152. | | Xiang YL, Zhou JZ, Liu Y, et al. An investigation of ticks and tick-borne bacteria in some areas of Guizhou Province, China[J]. Chin J Vector Biol Control, 2022, 33(1): 148-152. (in Chinese) | [4] | Beard D, Stannard HJ, Old JM. Parasites of wombats (Family Vombatidae), with a focus on ticks and tick-borne pathogens[J]. Parasitol Res, 2021, 120(2): 395-409. | [5] | Chauvin A, Moreau E, Bonnet S, et al. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission[J]. Vet Res, 2009, 40(2): 37. | [6] | Pollet T, Sprong H, Lejal E, et al. The scale affects our view on the identification and distribution of microbial communities in ticks[J]. Parasit Vectors, 2020, 13(1): 36. | [7] | Greay TL, Gofton AW, Paparini A, et al. Recent insights into the tick microbiome gained through next-generation sequencing[J]. Parasit Vectors, 2018, 11(1): 12. | [8] | Duron O, Morel O, Noël V, et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways[J]. Curr Biol, 2018, 28(12): 1896-1902.e5. | [9] | Narasimhan S, Rajeevan N, Liu L, et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete[J]. Cell Host Microbe, 2014, 15(1): 58-71. | [10] | Boularias G, Azzag N, Galon C, et al. High-throughput microfluidic real-time PCR for the detection of multiple microorganisms in ixodid cattle ticks in northeast Algeria[J]. Pathogens, 2021, 10(3): 362. | [11] | 向昱龙, 周敬祝, 张燕, 等. 贵州省少数民族自治州微小扇头蜱的宏基因组分析[J]. 中国媒介生物学及控制杂志, 2023, 34(3): 319-325. | | Xiang YL, Zhou JZ, Zhang Y, et al. Metagenomic analysis of Rhipicephalus microplus from minority autonomous prefectures in Guizhou province, China[J]. Chin J Vector Biol Control, 2023, 34(3): 319-325. (in Chinese) | [12] | Jia N, Wang JF, Shi WQ, et al. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities[J]. Cell, 2020, 182(5): 1328-1340. | [13] | Lu M, Tian JH, Pan XL, et al. Identification of Rickettsia spp., Anaplasma spp., and an Ehrlichia canis-like agent in Rhipicephalus microplus from Southwest and South-Central China[J]. Ticks Tick Borne Dis, 2022, 13(2): 101884. | [14] | Gómez GF, Isaza JP, Segura JA, et al. Metatranscriptomic virome assessment of Rhipicephalus microplus from Colombia[J]. Ticks Tick Borne Dis, 2020, 11(5): 101426. | [15] | Makenov MT, Toure AH, Korneev MG, et al. Rhipicephalus microplus and its vector-borne haemoparasites in Guinea: Further species expansion in West Africa[J]. Parasitol Res, 2021, 120(5): 1563-1570. | [16] | Cardoso ADS, Santos EGG, Lima ADS, et al. Terpenes on Rhipicephalus (boophilus) microplus: Acaricidal activity and acetylcholinesterase inhibition[J]. Vet Parasitol, 2020, 280: 109090. | [17] | Maldonado-Ruiz LP, Neupane S, Park Y, et al. The bacterial community of the lone star tick (Amblyomma americanum)[J]. Parasit Vectors, 2021, 14(1): 49. | [18] | 张钰, 张科, 刘佳伟, 等. 普氏野马分布区域亚洲璃眼蜱的宏基因组分析与病原体评估[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(4): 439-446, 453. | | Zhang Y, Zhang K, Liu JW, et al. Metagenomic analysis and potential assessment of Hyalomma asiaticum in the distribution area of Przewalski’s horses[J]. Chin J Parasitol Parasit Dis, 2024, 42(4): 439-446, 453. (in Chinese) | [19] | Jiao J, Lu ZY, Yu YH, et al. Identification of tick-borne pathogens by metagenomic next-generation sequencing in Dermacentor nuttalli and Ixodes persulcatus in Inner Mongolia, China[J]. Parasit Vectors, 2021, 14(1): 287. | [20] | Misra BR, Kumar N, Kant R, et al. Abundance of ticks (Acari : Ixodidae) and presence of Rickettsia and Anaplasma in ticks infesting domestic animals from Northern India[J]. J Med Entomol, 2021, 58(3): 1370-1375. | [21] | Xiang LL, Poźniak B, Cheng TY. Bacteriological analysis of saliva from partially or fully engorged female adult Rhipicephalus microplus by next-generation sequencing[J]. Antonie Van Leeuwenhoek, 2017, 110(1): 105-113. | [22] | 管毓威, 罗小龙, 周敬祝, 等. 贵州省部分地区微小扇头蜱微生物群落多样性及抗生素抗性基因的宏基因组分析[J]. 中国媒介生物学及控制杂志, 2024, 35(4): 394-400, 439. | | Guan YW, Luo XL, Zhou JZ, et al. Metagenomic analysis of microbial community diversity and antibiotic resistance genes of Rhipicephalus microplus in some areas of Guizhou Province, China[J]. Chin J Vector Biol Control, 2024, 35(4): 394-400, 439. (in Chinese) | [23] | Xiang YL, Zhou JZ, Yu FX, et al. Characterization of bacterial communities in ticks parasitizing cattle in a touristic location in southwestern China[J]. Exp Appl Acarol, 2023, 90(1/2): 119-135. | [24] | Wang Q, Guo WB, Pan YS, et al. Detection of novel spotted fever group Rickettsiae (Rickettsiales : Rickettsiaceae) in ticks (Acari : Ixodidae) in Southwestern China[J]. J Med Entomol, 2021, 58(3): 1363-1369. | [25] | Kim JY, Yi MH, Mahdi AAS, et al. iSeq 100 for metagenomic pathogen screening in ticks[J]. Parasit Vectors, 2021, 14(1): 346. | [26] | 陈秋, 何贤海, 孟娇, 等. 贵州省罗甸县山羊体表寄生蜱携带柯克斯体属细菌的基因特征分析[J]. 中国媒介生物学及控制杂志, 2024, 35(4): 417-421. | | Chen Q, He XH, Meng J, et al. Analysis of genetic characteristics of Coxiella carried by parasitic ticks on goat body surface in Luodian County, Guizhou Province, China[J]. Chin J Vector Biol Control, 2024, 35(4): 417-421. (in Chinese) | [27] | 刘子维, 李华锋. 辽宁省营口市长角血蜱携带立克次体和埃立克体调查[J]. 中国媒介生物学及控制杂志, 2024, 35(6): 714-718. | | Liu ZW, Li HF. Investigation of Rickettsia and Ehrlichia harbored by Haemaphysalis longicornis in Yingkou City, Liaoning Province, China[J]. Chin J Vector Biol Control, 2024, 35(6): 714-718. (in Chinese) | [28] | Tufts DM, Sameroff S, Tagliafierro T, et al. A metagenomic examination of the pathobiome of the invasive tick species, Haemaphysalis longicornis, collected from a New York City borough, USA[J]. Ticks Tick Borne Dis, 2020, 11(6): 101516. | [29] | Guizzo MG, Parizi LF, Nunes RD, et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus[J]. Sci Rep, 2017, 7(1): 17554. | [30] | Qi Y, Ai LL, Zhu CQ, et al. Wild hedgehogs and their parasitic ticks coinfected with multiple tick-borne pathogens in Jiangsu Province, Eastern China[J]. Microbiol Spectr, 2022, 10(5): e0213822. | [31] | Li J, Kelly P, Guo WN, et al. Molecular detection of Rickettsia, Hepatozoon, Ehrlichia and SFTSV in goat ticks[J]. Vet Parasitol Reg Stud Reports, 2020, 20: 100407. | [32] | Zhang RL, Zhang Q, Yu GF, et al. Metagenomic deep sequencing obtains taxonomic and functional profiles of Haemaphysalis longicornis that vary in response to different developmental stages and sexes[J]. Exp Appl Acarol, 2021, 83(2): 285-300. | [33] | Takano A, Ando S, Kishimoto T, et al. Presence of a novel Ehrlichia sp. in Ixodes granulatus found in Okinawa, Japan[J]. Microbiol Immunol, 2009, 53(2): 101-106. |
|