中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (4): 526-532.doi: 10.12140/j.issn.1000-7423.2021.04.017
徐枫雁(), 杨勇, 高欣, 刘晓雷, 王洋, 刘明远, 张媛媛, 白雪*(
)
收稿日期:
2020-09-16
修回日期:
2020-11-10
出版日期:
2021-08-30
发布日期:
2021-06-11
通讯作者:
白雪
作者简介:
徐枫雁(1997-),硕士研究生,主要从事重要食源性人兽共患寄生虫与宿主关系的研究。E-mail: xufy19@163.com
基金资助:
XU Feng-yan(), YANG Yong, GAO Xin, LIU Xiao-lei, WANG Yang, LIU Ming-yuan, ZHANG Yuan-yuan, BAI Xue*(
)
Received:
2020-09-16
Revised:
2020-11-10
Online:
2021-08-30
Published:
2021-06-11
Contact:
BAI Xue
Supported by:
摘要:
胞外囊泡(EV)是一种由多种细胞分泌的内含蛋白质、核酸和脂质的磷脂双分子层囊泡,是参与细胞间相互作用的重要介质。寄生虫在入侵、生存和繁殖过程中利用EV向外界分泌蛋白质,调节宿主免疫反应,有利于自身寄生。本文对近年来寄生蠕虫、原虫EV蛋白质组学方面的研究进展进行综述,为描述寄生虫-宿主互作机制提供思路。
中图分类号:
徐枫雁, 杨勇, 高欣, 刘晓雷, 王洋, 刘明远, 张媛媛, 白雪. 寄生虫胞外囊泡蛋白质组学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 526-532.
XU Feng-yan, YANG Yong, GAO Xin, LIU Xiao-lei, WANG Yang, LIU Ming-yuan, ZHANG Yuan-yuan, BAI Xue. Advances in research on parasite proteomics of extracellular vesicles[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(4): 526-532.
[1] | Ma L, Li Y, Peng JY, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration[J]. Cell Res, 2015, 25(1):24-38. |
[2] |
Xie F, Zhou X, Fang M, et al. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy[J]. Adv Sci, 2019, 6(24):1901779.
doi: 10.1002/advs.v6.24 |
[3] |
Ofir-Birin Y, Regev-Rudzki N. Extracellular vesicles in parasite survival[J]. Science, 2019, 363(6429):817-818.
doi: 10.1126/science.aau4666 pmid: 30792291 |
[4] |
Schwartz C, Fallon PG. Schistosoma ‘eggs-iting’ the host: granuloma formation and egg excretion[J]. Front Immunol, 2018, 9:2492.
doi: 10.3389/fimmu.2018.02492 |
[5] |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977.
doi: 10.1126/science.aau6977 |
[6] | Lawrence E, John S, Peter Q, et al. Exosomes[M]. 2020: 179-198. |
[7] | Liu L, Yang Y, Gao X, et al. Preliminary prevention effect of Trichinella spiralis extracellular vesicles on TNBS-induced experimental colitis in mice[J]. Prog Vet Med, 2020, 41(5):67-73. (in Chinese) |
(刘蕾, 杨勇, 高欣, 等. 旋毛虫细胞外囊泡对TNBS诱导的小鼠实验性结肠炎的初步干预作用[J]. 动物医学进展, 2020, 41(5):67-73.) | |
[8] |
Nawaz M, Malik MI, Hameed M, et al. Research progress on the composition and function of parasite-derived exosomes[J]. Acta Trop, 2019, 196:30-36.
doi: 10.1016/j.actatropica.2019.05.004 |
[9] | Shen H, Liu CY, Zhao YM. Extracellular vesicles of parasites: research development and prospect[J]. Chin J Parasitol Parasit Dis, 2018, 36(4):413-417. (in Chinese) |
(沈辉, 刘春英, 赵玉敏. 寄生虫细胞外囊泡的研究现状及展望[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4):413-417.) | |
[10] | Huang L, Ye CL, Sheng Y, et al. Advances in research on parasite exosomal miRNA[J]. J Pathog Biol, 2019, 14(9):1115-1118. (in Chinese) |
(黄琳, 叶昌林, 生燕, 等. 外泌体miRNA在寄生虫中的进展[J]. 中国病原生物学杂志, 2019, 14(9):1115-1118.) | |
[11] |
Whitehead B, Boysen AT, Mardahl M, et al. Unique glycan and lipid composition of helminth-derived extracellular vesicles may reveal novel roles in host-parasite interactions[J]. Int J Parasitol, 2020, 50(9):647-654.
doi: S0020-7519(20)30120-X pmid: 32526222 |
[12] |
Andrade G, Bertsch DJ, Gazzinelli A, et al. Decline in infection-related morbidities following drug-mediated reductions in the intensity of Schistosoma infection: a systematic review and meta-analysis[J]. PLoS Negl Trop Dis, 2017, 11(2):e0005372.
doi: 10.1371/journal.pntd.0005372 |
[13] | Sun CS, Hu W, Wang TP. Advances in research on schistosome-host interactions mediated by extracellular vesicles[J]. Chin J Parasitol Parasit Dis, 2020, 38(3):378-382. (in Chinese) |
(孙成松, 胡薇, 汪天平. 胞外囊泡介导血吸虫与宿主相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(3):378-382.) | |
[14] |
Sotillo J, Pearson M, Potriquet J, et al. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates[J]. Int J Parasitol, 2016, 46(1):1-5.
doi: 10.1016/j.ijpara.2015.09.002 pmid: 26460238 |
[15] |
Gómez-Arreaza A, Acosta H, Quiñones W, et al. Extracellular functions of glycolytic enzymes of parasites: unpredicted use of ancient proteins[J]. Mol Biochem Parasitol, 2014, 193(2):75-81.
doi: 10.1016/j.molbiopara.2014.02.005 |
[16] |
Caraballo L, Coronado S. Parasite allergens[J]. Mol Immunol, 2018, 100:113-119.
doi: S0161-5890(18)30093-2 pmid: 29588070 |
[17] |
Rinaldi G, Morales ME, Alrefaei YN, et al. RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs[J]. Mol Biochem Parasitol, 2009, 167(2):118-126.
doi: 10.1016/j.molbiopara.2009.05.002 |
[18] |
Kifle DW, Pearson MS, Becker L, et al. Proteomic analysis of two populations of Schistosoma mansoni-derived extracellular vesicles: 15 k pellet and 120 k pellet vesicles[J]. Mol Biochem Parasitol, 2020, 236:111264.
doi: 10.1016/j.molbiopara.2020.111264 |
[19] |
Bexkens ML, van Gestel RA, van Breukelen B, et al. Schistosoma mansoni infection affects the proteome and lipidome of circulating extracellular vesicles in the host[J]. Mol Biochem Parasitol, 2020, 238:111296.
doi: 10.1016/j.molbiopara.2020.111296 |
[20] |
Nowacki FC, Swain MT, Klychnikov OI, et al. Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni[J]. J Extracell Vesicles, 2015, 4:28665.
doi: 10.3402/jev.v4.28665 pmid: 26443722 |
[21] |
Arbelaiz A, Azkargorta M, Krawczyk M, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma[J]. Hepatology, 2017, 66(4):1125-1143.
doi: 10.1002/hep.29291 pmid: 28555885 |
[22] |
Corral-Ruiz GM, Sánchez-Torres LE. Fasciola hepatica-derived molecules as potential immunomodulators[J]. Acta Trop, 2020, 210:105548.
doi: S0001-706X(20)30014-0 pmid: 32505597 |
[23] |
de la Torre-Escudero E, Gerlach JQ, Bennett APS, et al. Surface molecules of extracellular vesicles secreted by the helminth pathogen Fasciola hepatica direct their internalisation by host cells[J]. PLoS Negl Trop Dis, 2019, 13(1):e0007087.
doi: 10.1371/journal.pntd.0007087 |
[24] |
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes[J]. Curr Opin Cell Biol, 2014, 29:116-125.
doi: 10.1016/j.ceb.2014.05.004 |
[25] |
Chaiyadet S, Sotillo J, Smout M, et al. Carcinogenic liver fluke secretes extracellular vesicles that promote cholangiocytes to adopt a tumorigenic phenotype[J]. J Infect Dis, 2015, 212(10):1636-1645.
doi: 10.1093/infdis/jiv291 pmid: 25985904 |
[26] |
Alvarez Rojas CA, Kronenberg PA, Aitbaev S, et al. Genetic diversity of Echinococcus multilocularis and Echinococcus granulosus sensu lato in Kyrgyzstan: the A2 haplotype of E. multilocularis is the predominant variant infecting humans[J]. PLoS Negl Trop Dis, 2020, 14(5):e0008242.
doi: 10.1371/journal.pntd.0008242 |
[27] |
Nicolao MC, Rodriguez Rodrigues C, Cumino AC. Extracellular vesicles from Echinococcus granulosus larval stage: isolation, characterization and uptake by dendritic cells[J]. PLoS Negl Trop Dis, 2019, 13(1):e0007032.
doi: 10.1371/journal.pntd.0007032 |
[28] |
Zhou X, Wang W, Cui F, et al. Extracellular vesicles derived from Echinococcus granulosus hydatid cyst fluid from patients: isolation, characterization and evaluation of immunomodulatory functions on T cells[J]. Int J Parasitol, 2019, 49(13/14):1029-1037.
doi: 10.1016/j.ijpara.2019.08.003 |
[29] |
Siles-Lucas M, Sánchez-Ovejero C, González-Sánchez M, et al. Isolation and characterization of exosomes derived from fertile sheep hydatid cysts[J]. Vet Parasitol, 2017, 236:22-33.
doi: S0304-4017(17)30032-8 pmid: 28288760 |
[30] |
Arias-Hernández D, García-Jiménez S, Domínguez-Roldan R, et al. Effects of Taenia pisiformis infection and obesity on clinical parameters, organometry and fat distribution in male rabbits[J]. Pathogens, 2020, 9(11):861.
doi: 10.3390/pathogens9110861 |
[31] |
Wang LQ, Liu TL, Liang PH, et al. Characterization of exosome-like vesicles derived from Taenia pisiformis cysticercus and their immunoregulatory role on macrophages[J]. Parasites Vectors, 2020, 13(1):318.
doi: 10.1186/s13071-020-04186-z |
[32] |
Sadaow L, Sanpool O, Phosuk I, et al. Molecular identification of Ascaris lumbricoides and Ascaris suum recovered from humans and pigs in Thailand, Lao PDR, and Myanmar[J]. Parasitol Res, 2018, 117(8):2427-2436.
doi: 10.1007/s00436-018-5931-6 |
[33] |
Hansen EP, Fromm B, Andersen SD, et al. Exploration of extracellular vesicles from Ascaris suum provides evidence of parasite-host cross talk[J]. J Extracell Vesicles, 2019, 8(1):1578116.
doi: 10.1080/20013078.2019.1578116 pmid: 30815237 |
[34] |
Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation[J]. PLoS Biol, 2012, 10(12):e1001450.
doi: 10.1371/journal.pbio.1001450 |
[35] | Gordon CA, Jones MK, McManus DP. The history of bancroftian lymphatic filariasis in Australasia and Oceania: is there a threat of re-occurrence in mainland Australia?[J]. Trop Med Infect Dis, 2018, 3(2):E58. |
[36] |
Harischandra H, Yuan W, Loghry HJ, et al. Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin[J]. PLoS Neglected Trop Dis, 2018, 12(4):e0006438.
doi: 10.1371/journal.pntd.0006438 |
[37] |
Sánchez-Valdéz FJ, Padilla A, Wang W, et al. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure[J]. Elife, 2018, 7:e34039.
doi: 10.7554/eLife.34039 |
[38] |
Cronemberger-Andrade A, Xander P, Soares RP, et al. Trypanosoma cruzi-infected human macrophages shed proinflammatory extracellular vesicles that enhance host-cell invasion via toll-like receptor 2[J]. Front Cell Infect Microbiol, 2020, 10:99.
doi: 10.3389/fcimb.2020.00099 |
[39] |
Urményi TP, Silva R, Rondinelli E. The heat shock proteins of Trypanosoma cruzi[J]. Subcell Biochem, 2014, 74:119-135.
doi: 10.1007/978-94-007-7305-9_5 pmid: 24264243 |
[40] |
Kengne-Ouafo JA, Sutherland CJ, Binka FN, et al. Immune responses to the sexual stages of Plasmodium falciparum parasites[J]. Front Immunol, 2019, 10:136.
doi: 10.3389/fimmu.2019.00136 pmid: 30804940 |
[41] | Demarta-Gatsi C, Rivkin A, Di Bartolo V, et al. Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses[J]. Cell Microbiol, 2019, 21(7):e13021. |
[42] |
Nandan D, Yi TL, Lopez M, et al. Leishmania EF-1α activates the src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation[J]. J Biol Chem, 2002, 277(51):50190-50197.
pmid: 12384497 |
[43] |
Toda H, Diaz-Varela M, Segui-Barber J, et al. Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-kB facilitating parasite cytoadherence[J]. Nat Commun, 2020, 11:2761.
doi: 10.1038/s41467-020-16337-y |
[44] |
Díaz-Varela M, de Menezes-Neto A, Perez-Zsolt D, et al. Proteomics study of human cord blood reticulocyte-derived exosomes[J]. Sci Rep, 2018, 8(1):14046.
doi: 10.1038/s41598-018-32386-2 pmid: 30232403 |
[45] |
Bernabeu M, Lopez FJ, Ferrer M, et al. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor[J]. Cell Microbiol, 2012, 14(3):386-400.
doi: 10.1111/j.1462-5822.2011.01726.x pmid: 22103402 |
[46] |
Medina G, Leyán P, da Silva CV, et al. Intra-amoebic localization of Arcobacter butzleri as an endocytobiont of Acanthamoeba castellanii[J]. Arch Microbiol, 2019, 201(10):1447-1452.
doi: 10.1007/s00203-019-01699-9 pmid: 31302710 |
[47] |
Lin WC, Tsai CY, Huang JM, et al. Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles[J]. Parasit Vectors, 2019, 12(1):467.
doi: 10.1186/s13071-019-3725-z |
[48] |
Gonçalves DS, Ferreira MDS, Liedke SC, et al. Extracellular vesicles and vesicle-free secretome of the protozoa Acanthamoeba castellanii under homeostasis and nutritional stress and their damaging potential to host cells[J]. Virulence, 2018, 9(1):818-836.
doi: 10.1080/21505594.2018.1451184 pmid: 29560793 |
[49] |
Zhang Y, Lai BS, Juhas M, et al. Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis[J]. Microbiol Res, 2019, 227:126293.
doi: S0944-5013(19)30471-9 pmid: 31421715 |
[50] |
Wowk PF, Zardo ML, Miot HT, et al. Proteomic profiling of extracellular vesicles secreted from Toxoplasma gondii[J]. Proteomics, 2017, 17(15/16):1600477.
doi: 10.1002/pmic.v17.15-16 |
[51] | Li PJ, Zuo SQ, Duan YJ, et al. Advances in research on exosomes of Toxoplasma spp.[J]. Chin J Parasitol Parasit Dis, 2020, 38(5):653-658. (in Chinese) |
(李朋举, 左素琼, 段玉娟, 等. 弓形虫外泌体研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5):653-658.) | |
[52] |
Ramírez-Flores CJ, Cruz-Mirón R, Mondragón-Castelán ME, et al. Proteomic and structural characterization of self-assembled vesicles from excretion/secretion products of Toxoplasma gondii[J]. J Proteomics, 2019, 208:103490.
doi: S1874-3919(19)30262-3 pmid: 31434009 |
[53] |
Leroux LP, Dasanayake D, Rommereim LM, et al. Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages[J]. Int J Parasitol, 2015, 45(5):319-332.
doi: 10.1016/j.ijpara.2015.01.003 |
[54] |
Rezaei F, Sarvi S, Sharif M, et al. A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization[J]. Microb Pathog, 2019, 126:172-184.
doi: 10.1016/j.micpath.2018.11.003 |
[55] |
Calero-Bernal R, Horcajo P, Hernández M, et al. Absence of Neospora caninum DNA in human clinical samples, Spain[J]. Emerg Infect Dis, 2019, 25(6):1226-1227.
doi: 10.3201/eid2506.181431 pmid: 31107232 |
[56] |
Li S, Gong P, Tai L, et al. Extracellular vesicles secreted by Neospora caninum are recognized by Toll-Like receptor 2 and modulate host cell innate immunity through the MAPK signaling pathway[J]. Front Immunol, 2018, 9:1633.
doi: 10.3389/fimmu.2018.01633 |
[1] | 徐志鹏, 季旻珺, 吴观陵. 寄生虫虫源性成分对宿主的毒理与药理效应[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 561-571. |
[2] | 谭百宏, 王艳玲, 郑敬彤. 人体寄生虫学教学新时代的挑战和发展方向[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 635-641. |
[3] | 邹伟浩, 周丽娟, 彭鸿娟, 佟矿. 中国新型冠状病毒肺炎疫情期间医学寄生虫学的混合式教学[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 507-510. |
[4] | 潘筱雯, 吴银娟, 何晴, 殷颖璇, 李学荣. 寄生蠕虫外泌体及其功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 390-395. |
[5] | 荆雯雯, 程训佳. 多学科交叉新型检测技术在寄生虫感染诊断中的应用和展望[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 20-27. |
[6] | 洪炀, 林矫矫. 日本血吸虫蛋白质组学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 725-730. |
[7] | 丁昕, 金小林, 茅范贞, 张强, 徐祥珍, 戴洋, 曹俊. 2016—2020年江苏省农村地区无害化卫生户厕改造效果评估[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 794-797. |
[8] | 蔡璇, 杨亚明, 李奔福, 严信留, 彭佳, 字金荣, 吴方伟. 2015年云南省滇桂粤南部生态区人体重点寄生虫感染情况调查[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 848-852. |
[9] | 陈琳, 邱竞帆, 周莎, 刘新建, 徐志鹏, 季旻珺. 《一带一路与全球健康》通识教育与寄生虫学教学的融合式设计[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 501-504. |
[10] | 孙叶挺, 曹建平, 沈玉娟. 髓源抑制性细胞免疫抑制功能及其在寄生虫感染领域的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 505-513. |
[11] | 邓积广, 余水兰, 农智, 蒋智华. 2016—2019年广西百色市人体重点寄生虫病监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 342-346. |
[12] | 王真瑜, 吴寰宇, 江莉, 马晓疆, 张耀光, 何艳燕, 朱倩. 2015—2019年上海市市售食品寄生虫感染监测分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 347-351. |
[13] | 朱慧慧, 诸廷俊, 陈颖丹, 邓卓晖, 许静, 周长海, 钱门宝, 秦志强, 黄继磊, 吕超, 张米禛, 李石柱. 新型冠状病毒肺炎疫情对重点寄生虫病防控工作的影响[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 365-369. |
[14] | 闫宝龙, 梁韶晖. 《医学寄生虫学》线上线下混合式课程建设及应用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 376-379. |
[15] | 钱门宝, 陈颖丹, 朱慧慧, 刘亨辉, 周长海, 诸廷俊, 许隆祺, 李石柱, 周晓农. 2014—2015年全国人体重点寄生虫病现状调查的抽样设计及解读[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 88-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||