[1] | Colley DG, Bustinduy AL, Secor WE, et al. Human schistos-omiasis[J]. Lancet, 2014, 383(9936): 2253-2264. | [2] | 张利娟, 徐志敏, 钱颖骏, 等. 2016年全国血吸虫病疫情通报[J]. 中国血吸虫病防治杂志, 2017, 29(6): 669-677. | [3] | Anthony B, Allen JT, Li YS, et al. Hepatic stellate cells and parasite-induced liver fibrosis[J]. Parasit Vectors, 2010, 3(1): 60. | [4] | Jin H, Jia Y, Yao Z, et al. Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell[J]. Cell Signal, 2017, 33: 79-85. | [5] | Fasbender F, Widera A, Hengstler JG, et al. Natural killer cells and liver fibrosis[J]. Front Immunol, 2016, 7: 19. | [6] | Del Zotto G, Marcenaro E, Vacca P, et al. Markers and function of human NK cells in normal and pathological conditions[J]. Cytometry B Clin Cytom, 2017, 92(2): 100-114. | [7] | 陈利, 张自力, 张峰, 等. NK细胞及其受体在肝纤维化中的作用[J]. 中国药理学通报, 2012, 28(11): 1486-1488. | [8] | Hesse M, Cheever AW, Jankovic D, et al. NOS-2 mediates the protective anti-inflammatory and antifibrotic effects of the Th1-inducing adjuvant, IL-12, in a Th2 model of granulomatous disease[J]. Am J Pathol, 2000, 157(3): 945-955. | [9] | IMamura M, Ogawa T, Sasaguri Y, et al. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats[J]. Gastroenterology, 2005, 128(1): 138-146. | [10] | 张晓慧, 白丽, 刘新, 等. 调节性T细胞对肝纤维化小鼠肝脏免疫细胞的影响[J]. 北京医学, 2015, 37(12): 1167-1170. | [11] | Shi Z, Wakil AE, Rockey DC.Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses[J]. Proc Natl Acad Sci USA, 1997, 94(20): 10663-10668. | [12] | 刘亚平, 梁越进, 孙新娟, 等. 日本血吸虫感染小鼠肝脏及脾脏NKT细胞的变化[J]. 中国血吸虫病防治杂志, 2010, 22(3): 213-216. | [13] | Asseman C, Pancré V, Quatennens B, et al. Schistosoma mansoni-infected mice show augmented hepatic fibrosis and selective inhibition of liver cytokine production after treatment with anti-NK1.1 antibodies[J]. Immunol Lett, 1996, 54(1): 11-20. | [14] | Hou X, Yu F, Man S, et al. Negative regulation of Schistosoma japonicum egg-induced liver fibrosis by natural killer cells[J]. PLoS Negl Trop Dis, 2012, 6(1): e1456. | [15] | Lanier LL.Nk cell recognition[J]. Annu Rev Immunol, 2005, 23(1): 225-274. | [16] | Fife BT, Pauken KE.The role of the PD-1 pathway in autoimmunity and peripheral tolerance[J]. Ann N Y Acad Sci, 2011, 1217: 45-59. | [17] | Thibult ML, Mamessier E, Gertner-dardenne J, et al. PD-1 is a novel regulator of human B-cell activation[J]. Int Immunol, 2013, 25(2): 129-137. | [18] | Beldi-Ferchiou A, Lambert M, Dogniaux S, et al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma[J]. Oncotarget, 2016, 7(45): 72961-72977. | [19] | Seo H, Jeon I, Kim BS, et al. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours[J]. Nat Commun, 2017, 8: 15776. | [20] | Pesce S, Greppi M, Tabellini G, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization[J]. J Allergy Clin Immunol, 2017, 139(1): 335-346. | [21] | Wiesmayr S, Webber SA, Macedo C, et al. Decreased NKp46 and NKG2D and elevated PD-1 are associated with altered NK-cell function in pediatric transplant patients with PTLD[J]. Eur J Immunol, 2012, 42(2): 541-550. | [22] | Zhang Y, Jiang Y, Wang Y, et al. Higher frequency of circulating PD-1(high) CXCR5(+)CD4(+) Tfh cells in patients with chronic schistosomiasis[J]. Int J Biol Sci, 2015, 11(9): 1049-1055. | [23] | Ndhlovu LC, Lopez-vergès S, Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity[J]. Blood, 2012, 119(16): 3734-3743. | [24] | Gallois A, Silva I, Osman I, et al. Reversal of natural killer cell exhaustion by TIM-3 blockade[J]. Oncoimmunology, 2014, 3(12): e946365. | [25] | Xu L, Huang Y, Tan L, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma[J]. Int Immunopharmacol, 2015, 29(2): 635-641. | [26] | da Silva IP, Gallois A, Jimenez-baranda S, et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade[J]. Cancer Immunol Res, 2014, 2(5): 410-422. | [27] | Lin Chua H, Brahmi Z.Expression of p58.2 or CD94/NKG2A inhibitory receptors in an NK-like cell line, YTINDY, leads to HLA Class I-mediated inhibition of cytotoxicity in the p58.2-but not the CD94/NKG2A-expressing transfectant[J]. Cell Immunol, 2002, 219(1): 57-70. | [28] | Xu HC, Huang J, Pandyra AA, et al. Lymphocytes negatively regulate NK cell activity via Qa-1b following viral infection[J]. Cell Rep, 2017, 21(9): 2528-2540. | [29] | Platonova S, Cherfils-vicini J, Damotte D, et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma[J]. Cancer Res, 2011, 71(16): 5412-5422. | [30] | Ruggeri L, Urbani E, André P, et al. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells[J]. Haematologica, 2016, 101(5): 626-633. | [31] | Stanietsky N, Rovis TL, Glasner A, et al. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR[J]. Eur J Immunol, 2013, 43(8): 2138-2150. | [32] | Stanietsky N, Simic H, Arapovic J, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity[J]. Proc Natl Acad Sci USA, 2009, 106(42): 17858-17863. | [33] | Kurtulus S, Sakuishi K, Ngiow SF, et al. TIGIT predominantly regulates the immune response via regulatory T cells[J]. J Clin Invest, 2015, 125(11): 4053-4062. | [34] | Chauvin J M, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients[J]. J Clin Invest, 2015, 125(5): 2046-2058. | [35] | Huard B, Gaulard P, Faure F, et al. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class Ⅱ ligand[J]. Immunogenetics, 1994, 39(3): 213-217. | [36] | Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4[J]. J Exp Med, 1990, 171(5): 1393-1405. | [37] | Workman CJ, Wang Y, El Kasmi KC, et al. LAG-3 regulates plasmacytoid dendritic cell homeostasis[J]. J Immunol, 2009, 182(4): 1885-1891. | [38] | Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells[J]. Immunity, 2004, 21(4): 503-513. | [39] | Grosso JF, Kelleher CC, Harris TJ, et al. LAG-3 regulates CD8+T cell accumulation and effector function in murine self- and tumor-tolerance systems[J]. J Clin Invest, 2007, 117(11): 3383-3392. | [40] | Blackburn SD, Shin H, Haining WN, et al. Coregulation of CD8+T cell exhaustion by multiple inhibitory receptors during chronic viral infection[J]. Nat Immunol, 2008, 10(1): 29-37. | [41] | Andrews LP, Marciscano AE, Drake CG, et al, LAG3(CD223)as a cancer immunotherapy target[J]. Immunos Rev, 2017, 276(1): 80-96. | [42] | Natarajan K, Dimasi N, Wang J, et al. Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination[J]. Annu Rev Immunol, 2002, 20: 853-885. | [43] | Watzl C, Urlaub D, Fasbender F, et al. Natural killer cell regulation-beyond the receptors[J]. F1000Prime Rep, 2014, 6: 87. | [44] | Raulet DH, Gasser S, Gowen BG, et al. Regulation of ligands for the NKG2D activating receptor[J]. Annu Rev Immunol, 2013, 31: 413-441. | [45] | Lanier LL.NKG2D receptor and its ligands in host defense[J]. Cancer Immunol Res, 2015, 3(6): 575-582. | [46] | González S, López-Soto A, Suare-Zalvarez B, et al. NKG2D ligands: key targets of the immune response[J]. Trends Immunol, 2008, 29(8): 397-403. | [47] | Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA[J]. Science, 1999, 285(5428): 727-729. | [48] | Deng W, Gowen BG, Zhang L, et al. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection[J]. Science, 2015, 348(6230): 136-139. | [49] | Kaiser BK, Yim D, Chow IT, et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands[J]. Nature, 2007, 447(7143): 482-486. | [50] | de Andrade LF, Smyth MJ, Martinet L. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins[J]. Immunol Cell Biol, 2014, 92(3): 237-244. | [51] | Shibuya A, Campbell D, Hannum C, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes[J]. Immunity, 1996, 4(6): 573-581. | [52] | Mathew PA, Garni-Wagner BA, Land K, et al. sCloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells[J]. J Immunol, 1993, 151(10): 5328-5337. | [53] | Assarsson E, Kambayashi T, Persson CM, et al. 2B4/CD48-mediated regulation of lymphocyte activation and function[J]. J Immunol, 2005, 175(4): 2045-2049. | [54] | Garni-Wagner BA, Purohit A, Mathew PA, et al. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells[J]. J Immunol, 1993, 151(1): 60-70. | [55] | Bryceson YT, March ME, Ljunggren HG, et al. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion[J]. Blood, 2006, 107(1): 159-166. | [56] | Bhat R, Rommelaere J.NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells[J]. BMC Cancer, 2013, 13: 367. | [57] | Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis[J]. Cell, 2008, 134(4): 657-667. | [58] | Gur C, Doron S, Kfir-Erenfeld S, et al. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis[J]. Gut, 2012, 61(6): 885-893. | [59] | Brodin P, Lakshmikanth T, Mehr R, et al. Natural killer cell tolerance persists despite significant reduction of self MHC class Ⅰ on normal target cells in mice[J]. PLoS One, 2010, 5(10): 1897-1907. | [60] | Li L, Cha H, Yu X, et al. The characteristics of NK cells in Schistosoma japonicum-infected mouse spleens[J]. Parasit Res, 2015, 114(12): 4371-4379. | [61] | 武其文, 朱翔, 付夏, 等. 晚期血吸虫病患者外周血NK细胞Tim-3分子的表达及其与肝纤维化指标的关系[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(5): 346-350. | [62] | Muhanna N, Abu Tair L, Doron S, et al. Amelioration of hepatic fibrosis by NK cell activation[J]. Gut, 2011, 60(1): 90-98. |
|