中国寄生虫学与寄生虫病杂志 ›› 2018, Vol. 36 ›› Issue (5): 504-509.
收稿日期:
2018-04-12
出版日期:
2018-10-30
发布日期:
2018-11-13
通讯作者:
胡媛
基金资助:
Xiao-ling WANG, Yuan HU*(), Jian-ping CAO
Received:
2018-04-12
Online:
2018-10-30
Published:
2018-11-13
Contact:
Yuan HU
Supported by:
摘要:
日本血吸虫病是一种广泛流行的人兽共患寄生虫病。血吸虫感染后虫卵可沉积于宿主的肝脏,引起肝纤维化,严重者发展成肝硬化,严重影响患者的生活质量并成为重要的公共卫生问题。自然杀伤(NK)细胞是重要的天然免疫细胞,该细胞无需预先致敏即可对靶标产生即时反应。肝星状细胞(HSCs)是形成血吸虫病肝纤维化的肌成纤维细胞的主要来源。近年来研究发现,NK细胞可通过杀伤HSC来缓解肝纤维化,肝纤维化的发展与NK细胞活化状态密切相关。而NK细胞的功能状态取决于它表面抑制型或活化型受体的表达。本文就NK细胞及其受体的研究进展进行综述,对NK细胞抗血吸虫病肝纤维化研究进行展望。
中图分类号:
王晓玲, 胡媛, 曹建平. 自然杀伤细胞及其受体与血吸虫病肝纤维化[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5): 504-509.
Xiao-ling WANG, Yuan HU, Jian-ping CAO. Associations of natural killer cells and their receptors with liver fibrosis in schistosomiasis[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2018, 36(5): 504-509.
[1] | Colley DG, Bustinduy AL, Secor WE, et al. Human schistos-omiasis[J]. Lancet, 2014, 383(9936): 2253-2264. |
[2] | 张利娟, 徐志敏, 钱颖骏, 等. 2016年全国血吸虫病疫情通报[J]. 中国血吸虫病防治杂志, 2017, 29(6): 669-677. |
[3] | Anthony B, Allen JT, Li YS, et al. Hepatic stellate cells and parasite-induced liver fibrosis[J]. Parasit Vectors, 2010, 3(1): 60. |
[4] | Jin H, Jia Y, Yao Z, et al. Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell[J]. Cell Signal, 2017, 33: 79-85. |
[5] | Fasbender F, Widera A, Hengstler JG, et al. Natural killer cells and liver fibrosis[J]. Front Immunol, 2016, 7: 19. |
[6] | Del Zotto G, Marcenaro E, Vacca P, et al. Markers and function of human NK cells in normal and pathological conditions[J]. Cytometry B Clin Cytom, 2017, 92(2): 100-114. |
[7] | 陈利, 张自力, 张峰, 等. NK细胞及其受体在肝纤维化中的作用[J]. 中国药理学通报, 2012, 28(11): 1486-1488. |
[8] | Hesse M, Cheever AW, Jankovic D, et al. NOS-2 mediates the protective anti-inflammatory and antifibrotic effects of the Th1-inducing adjuvant, IL-12, in a Th2 model of granulomatous disease[J]. Am J Pathol, 2000, 157(3): 945-955. |
[9] | IMamura M, Ogawa T, Sasaguri Y, et al. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats[J]. Gastroenterology, 2005, 128(1): 138-146. |
[10] | 张晓慧, 白丽, 刘新, 等. 调节性T细胞对肝纤维化小鼠肝脏免疫细胞的影响[J]. 北京医学, 2015, 37(12): 1167-1170. |
[11] | Shi Z, Wakil AE, Rockey DC.Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses[J]. Proc Natl Acad Sci USA, 1997, 94(20): 10663-10668. |
[12] | 刘亚平, 梁越进, 孙新娟, 等. 日本血吸虫感染小鼠肝脏及脾脏NKT细胞的变化[J]. 中国血吸虫病防治杂志, 2010, 22(3): 213-216. |
[13] | Asseman C, Pancré V, Quatennens B, et al. Schistosoma mansoni-infected mice show augmented hepatic fibrosis and selective inhibition of liver cytokine production after treatment with anti-NK1.1 antibodies[J]. Immunol Lett, 1996, 54(1): 11-20. |
[14] | Hou X, Yu F, Man S, et al. Negative regulation of Schistosoma japonicum egg-induced liver fibrosis by natural killer cells[J]. PLoS Negl Trop Dis, 2012, 6(1): e1456. |
[15] | Lanier LL.Nk cell recognition[J]. Annu Rev Immunol, 2005, 23(1): 225-274. |
[16] | Fife BT, Pauken KE.The role of the PD-1 pathway in autoimmunity and peripheral tolerance[J]. Ann N Y Acad Sci, 2011, 1217: 45-59. |
[17] | Thibult ML, Mamessier E, Gertner-dardenne J, et al. PD-1 is a novel regulator of human B-cell activation[J]. Int Immunol, 2013, 25(2): 129-137. |
[18] | Beldi-Ferchiou A, Lambert M, Dogniaux S, et al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma[J]. Oncotarget, 2016, 7(45): 72961-72977. |
[19] | Seo H, Jeon I, Kim BS, et al. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours[J]. Nat Commun, 2017, 8: 15776. |
[20] | Pesce S, Greppi M, Tabellini G, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization[J]. J Allergy Clin Immunol, 2017, 139(1): 335-346. |
[21] | Wiesmayr S, Webber SA, Macedo C, et al. Decreased NKp46 and NKG2D and elevated PD-1 are associated with altered NK-cell function in pediatric transplant patients with PTLD[J]. Eur J Immunol, 2012, 42(2): 541-550. |
[22] | Zhang Y, Jiang Y, Wang Y, et al. Higher frequency of circulating PD-1(high) CXCR5(+)CD4(+) Tfh cells in patients with chronic schistosomiasis[J]. Int J Biol Sci, 2015, 11(9): 1049-1055. |
[23] | Ndhlovu LC, Lopez-vergès S, Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity[J]. Blood, 2012, 119(16): 3734-3743. |
[24] | Gallois A, Silva I, Osman I, et al. Reversal of natural killer cell exhaustion by TIM-3 blockade[J]. Oncoimmunology, 2014, 3(12): e946365. |
[25] | Xu L, Huang Y, Tan L, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma[J]. Int Immunopharmacol, 2015, 29(2): 635-641. |
[26] | da Silva IP, Gallois A, Jimenez-baranda S, et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade[J]. Cancer Immunol Res, 2014, 2(5): 410-422. |
[27] | Lin Chua H, Brahmi Z.Expression of p58.2 or CD94/NKG2A inhibitory receptors in an NK-like cell line, YTINDY, leads to HLA Class I-mediated inhibition of cytotoxicity in the p58.2-but not the CD94/NKG2A-expressing transfectant[J]. Cell Immunol, 2002, 219(1): 57-70. |
[28] | Xu HC, Huang J, Pandyra AA, et al. Lymphocytes negatively regulate NK cell activity via Qa-1b following viral infection[J]. Cell Rep, 2017, 21(9): 2528-2540. |
[29] | Platonova S, Cherfils-vicini J, Damotte D, et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma[J]. Cancer Res, 2011, 71(16): 5412-5422. |
[30] | Ruggeri L, Urbani E, André P, et al. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells[J]. Haematologica, 2016, 101(5): 626-633. |
[31] | Stanietsky N, Rovis TL, Glasner A, et al. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR[J]. Eur J Immunol, 2013, 43(8): 2138-2150. |
[32] | Stanietsky N, Simic H, Arapovic J, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity[J]. Proc Natl Acad Sci USA, 2009, 106(42): 17858-17863. |
[33] | Kurtulus S, Sakuishi K, Ngiow SF, et al. TIGIT predominantly regulates the immune response via regulatory T cells[J]. J Clin Invest, 2015, 125(11): 4053-4062. |
[34] | Chauvin J M, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients[J]. J Clin Invest, 2015, 125(5): 2046-2058. |
[35] | Huard B, Gaulard P, Faure F, et al. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class Ⅱ ligand[J]. Immunogenetics, 1994, 39(3): 213-217. |
[36] | Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4[J]. J Exp Med, 1990, 171(5): 1393-1405. |
[37] | Workman CJ, Wang Y, El Kasmi KC, et al. LAG-3 regulates plasmacytoid dendritic cell homeostasis[J]. J Immunol, 2009, 182(4): 1885-1891. |
[38] | Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells[J]. Immunity, 2004, 21(4): 503-513. |
[39] | Grosso JF, Kelleher CC, Harris TJ, et al. LAG-3 regulates CD8+T cell accumulation and effector function in murine self- and tumor-tolerance systems[J]. J Clin Invest, 2007, 117(11): 3383-3392. |
[40] | Blackburn SD, Shin H, Haining WN, et al. Coregulation of CD8+T cell exhaustion by multiple inhibitory receptors during chronic viral infection[J]. Nat Immunol, 2008, 10(1): 29-37. |
[41] | Andrews LP, Marciscano AE, Drake CG, et al, LAG3(CD223)as a cancer immunotherapy target[J]. Immunos Rev, 2017, 276(1): 80-96. |
[42] | Natarajan K, Dimasi N, Wang J, et al. Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination[J]. Annu Rev Immunol, 2002, 20: 853-885. |
[43] | Watzl C, Urlaub D, Fasbender F, et al. Natural killer cell regulation-beyond the receptors[J]. F1000Prime Rep, 2014, 6: 87. |
[44] | Raulet DH, Gasser S, Gowen BG, et al. Regulation of ligands for the NKG2D activating receptor[J]. Annu Rev Immunol, 2013, 31: 413-441. |
[45] | Lanier LL.NKG2D receptor and its ligands in host defense[J]. Cancer Immunol Res, 2015, 3(6): 575-582. |
[46] | González S, López-Soto A, Suare-Zalvarez B, et al. NKG2D ligands: key targets of the immune response[J]. Trends Immunol, 2008, 29(8): 397-403. |
[47] | Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA[J]. Science, 1999, 285(5428): 727-729. |
[48] | Deng W, Gowen BG, Zhang L, et al. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection[J]. Science, 2015, 348(6230): 136-139. |
[49] | Kaiser BK, Yim D, Chow IT, et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands[J]. Nature, 2007, 447(7143): 482-486. |
[50] | de Andrade LF, Smyth MJ, Martinet L. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins[J]. Immunol Cell Biol, 2014, 92(3): 237-244. |
[51] | Shibuya A, Campbell D, Hannum C, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes[J]. Immunity, 1996, 4(6): 573-581. |
[52] | Mathew PA, Garni-Wagner BA, Land K, et al. sCloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells[J]. J Immunol, 1993, 151(10): 5328-5337. |
[53] | Assarsson E, Kambayashi T, Persson CM, et al. 2B4/CD48-mediated regulation of lymphocyte activation and function[J]. J Immunol, 2005, 175(4): 2045-2049. |
[54] | Garni-Wagner BA, Purohit A, Mathew PA, et al. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells[J]. J Immunol, 1993, 151(1): 60-70. |
[55] | Bryceson YT, March ME, Ljunggren HG, et al. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion[J]. Blood, 2006, 107(1): 159-166. |
[56] | Bhat R, Rommelaere J.NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells[J]. BMC Cancer, 2013, 13: 367. |
[57] | Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis[J]. Cell, 2008, 134(4): 657-667. |
[58] | Gur C, Doron S, Kfir-Erenfeld S, et al. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis[J]. Gut, 2012, 61(6): 885-893. |
[59] | Brodin P, Lakshmikanth T, Mehr R, et al. Natural killer cell tolerance persists despite significant reduction of self MHC class Ⅰ on normal target cells in mice[J]. PLoS One, 2010, 5(10): 1897-1907. |
[60] | Li L, Cha H, Yu X, et al. The characteristics of NK cells in Schistosoma japonicum-infected mouse spleens[J]. Parasit Res, 2015, 114(12): 4371-4379. |
[61] | 武其文, 朱翔, 付夏, 等. 晚期血吸虫病患者外周血NK细胞Tim-3分子的表达及其与肝纤维化指标的关系[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(5): 346-350. |
[62] | Muhanna N, Abu Tair L, Doron S, et al. Amelioration of hepatic fibrosis by NK cell activation[J]. Gut, 2011, 60(1): 90-98. |
[1] | 赵磊, 李佳, 莫刚, 李醇, 黄国洋, 彭小红. 华支睾吸虫感染对小鼠肝纤维化和免疫调节功能的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 760-765. |
[2] | 曹得萍, 李嘉静, 宋梦微, 莫刚. 多房棘球蚴组织蛋白体外刺激肝星状细胞变化的实验观察[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 440-445. |
[3] | 李天星, 张家明, 徐晨曦, 王子戈, 郭晶洁, 李姗. 基于网络药理学探讨复方鳖甲软肝片治疗华支睾吸虫感染所致肝纤维化的机制[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 510-515. |
[4] | 李婕, 文雨松, 李召军. 我国旅游开发对血吸虫病防治的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 355-360. |
[5] | 陈琳, 朱继峰, 邱竞帆, 徐志鹏, 张东辉, 陈璐, 何健, 李伟, 杨坤, 季旻珺. 寓全健康理念于血吸虫病防控虚拟仿真项目建设[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 81-84. |
[6] | 蒋小凤, 沈玉娟. 棘球蚴感染致肝纤维化的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 656-660. |
[7] | 冯家鑫, 公衍峰, 罗卓韦, 汪伟, 曹淳力, 许静, 李石柱. 我国血吸虫病防治策略的科学基础与“十四五”展望[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 428-435. |
[8] | 陈兵, 张国莉, 张高红. 血吸虫病候选疫苗临床研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 511-515. |
[9] | 高元, 章孝成, 胡媛, 曹建平. 自然杀伤细胞抑制血吸虫病肝纤维化作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 168-174. |
[10] | 阿卜杜艾尼·啊卜力孜, 排组拉沙拉依阿当, 塔来提·吐尔干, 张瑞青, 王慧, 张传山, 邵英梅, 吐尔干艾力·阿吉. 多房棘球蚴虫体蛋白介导NK细胞表面受体NKG2A对NK细胞功能的影响[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 36-42. |
[11] | 张雅兰, 蒋甜甜, 贺志权, 邓艳, 陈伟奇, 朱岩昆, 张红卫, 赵东阳. 小鼠感染肝毛细线虫肝脏microRNA的差异表达分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 56-60. |
[12] | 高元, 胡媛, 曹建平. 免疫细胞对血吸虫病肝纤维化作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 88-93. |
[13] | 郭苏影, 祝红庆, 曹淳力, 邓王平, 鲍子平, 贾铁武, 李银龙, 吕超, 秦志强, 张利娟, 冯婷, 杨帆, 吕山, 许静, 李石柱. 2020年长江中下游地区洪涝灾害后血吸虫病传播风险评估[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 753-758. |
[14] | 施亮, 熊春蓉, 刘毛毛, 魏秀参, 张键锋, 王鑫瑶, 王涛, 杭德荣, 羊海涛, 杨坤. 基于深度学习技术的湖北钉螺视觉智能识别模型效能评价[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 764-770. |
[15] | 马文梅, 桑伟, 艾麦提·牙森, 佐力克, 付莉, 苗娜. 核因子-κB/髓样分化分子88在细粒棘球蚴病患者肝纤维化中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 779-783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||