中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (6): 699-707.doi: 10.12140/j.issn.1000-7423.2023.06.006
收稿日期:
2023-07-14
修回日期:
2023-09-12
出版日期:
2023-12-30
发布日期:
2023-12-22
通讯作者:
* 吕大兵(1967-),男,博士,教授,从事血吸虫群体遗传学与流行病学、血吸虫病传播动力学建模分析研究。E-mail: 作者简介:
王宁(1996-),女,硕士研究生,从事血吸虫群体遗传学与流行病学研究。E-mail: nnff202018@163.com
基金资助:
WANG Ning(), PENG Hanqi, GAO Changzhe, CHENG Yuheng, LYU Dabing*(
)
Received:
2023-07-14
Revised:
2023-09-12
Online:
2023-12-30
Published:
2023-12-22
Contact:
* E-mail: Supported by:
摘要:
目的 测定具有“夜逸蚴”特征的日本血吸虫线粒体全基因组序列,并探讨其与大陆其他日本血吸虫地域株的系统进化关系,为后续进行种群遗传结构与遗传多样性研究提供新的数据。方法 2020年于安徽省石台县现场采集钉螺,实验室内分离感染性钉螺,逸出的尾蚴以腹部贴片法感染ICR小鼠,灌注法获取肝门静脉和肠系膜静脉处虫体,随机抽样进行测序。使用血液/组织基因组DNA提取试剂盒提取血吸虫DNA,采用Illumina NovaSeq 6000测序平台进行双末端测序,采用GetOrganelle软件组装线粒体基因组,使用MEGA 11软件分析线粒体基因组结构特征与碱基组成。选择已发表的中国地区17个日本血吸虫线粒体基因组序列,采用最大似然法(ML)和邻接法(NJ)构建系统进化树。结果 安徽省石台县分离的“夜逸蚴”日本血吸虫线粒体基因组全长14 085 bp(GenBank登录号:ON637109),编码36个基因,由12个蛋白编码基因(PCG),22个tRNA基因和2个rRNA基因组成。线粒体基因组A + T含量为71.35%,存在基因重叠区2处、基因间隔区29处;在22个tRNA基因中,除trnaC和trnaS1基因缺失二氢尿嘧啶(DHU)臂外,其余均能形成典型三叶草二级结构。蛋白编码基因中,cytb、nad4、nad2和nad6基因的终止密码子为TAA,不同于以TAG为终止密码子的中国其他地域株。基于NJ法和ML法构建的系统进化树具有相似的拓扑结构,石台县“夜逸蚴”日本血吸虫分离株单独成一支;中国台湾血吸虫株与中国大陆其他地域株分离,形成一支。结论 安徽省石台地区的日本血吸虫分离株其终止密码子与中国其他地域株存在差异,线粒体基因组的系统进化地位分析,与其他地域株亲缘关系较远,遗传差异较大。
中图分类号:
王宁, 彭晗琪, 高常哲, 程羽珩, 吕大兵. “夜逸蚴”日本血吸虫线粒体基因组特征与系统进化的关系[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 699-707.
WANG Ning, PENG Hanqi, GAO Changzhe, CHENG Yuheng, LYU Dabing. Characterization of the mitochondrial genome and phylogenetic implication of Schistosoma japonicum featured with “nocturnal cercarial emergence”[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(6): 699-707.
表1
GenBank下载的17条日本血吸虫线粒体基因组序列信息
样品来源(缩写) Population location(Abbreviation) | 经度 Longitude | 纬度 Latitude | 流行区类型 Types of ecological settings | GenBank登录号 GenBank accession no. |
---|---|---|---|---|
安徽石台 Shitai, Anhui(AHST) | 117.49 | 30.21 | 山丘型 Hilly-type | ON637109(研究样品 Research sample) |
安徽贵池 Guichi, Anhui(AHGC) | 117.57 | 30.69 | 湖沼型 Lake-type | KU196299 |
安徽铜陵 Tongling, Anhui(AHTL) | 117.80 | 30.95 | 湖沼型 Lake-type | KU196309 |
安徽枞阳 Zongyang, Anhui(AHZY) | 117.25 | 30.71 | 湖沼型 Lake-type | KF279406 |
安徽无为 Wuwei, Anhui(AHWW) | 117.90 | 31.31 | 湖沼型 Lake-type | KF279404 |
江苏无锡 Wuxi, Jiangsu(JSWX) | 120.28 | 31.53 | 湖沼型 Lake-type | HM120843 |
浙江嘉善 Jiashan, Zhejiang(ZJJS) | 120.93 | 30.84 | 湖沼型 Lake-type | HM120841 |
江西南昌 Nanchang, Jiangxi(JXNC) | 115.95 | 28.55 | 湖沼型 Lake-type | KU196369 |
江西永修 Yongxiu, Jiangxi(JXYX) | 115.83 | 29.02 | 湖沼型 Lake-type | HM120844 |
江西都昌 Duchang, Jiangxi(JXDC) | 116.21 | 29.28 | 湖沼型 Lake-type | KU196360 |
湖南岳阳 Yueyang, Hunan(HNYY) | 113.14 | 29.36 | 湖沼型 Lake-type | KU196338 |
湖南常德 Changde, Hunan(HNCD) | 111.71 | 29.04 | 湖沼型 Lake-type | KU196328 |
湖北武汉 Wuhan, Hubei(HBWH) | 114.31 | 30.60 | 湖沼型 Lake-type | HM120842 |
湖北沙市 Shashi, Hubei(HBSS) | 112.25 | 30.31 | 湖沼型 Lake-type | KU196237 |
四川西昌 Xichang, Sichuan(SCXC) | 102.20 | 27.50 | 山丘型 Hilly-type | KU196389 |
四川天全 Tianquan, Sichuan(SCTQ) | 102.78 | 30.06 | 山丘型 Hilly-type | HM120846 |
云南洱源 Eryuan, Yunnan(YNEY) | 99.95 | 26.12 | 山丘型 Hilly-type | KU196408 |
中国台湾 Taiwan, China(TW) | 120.92 | 23.85 | 湖沼型 Lake-type | KU196407 |
表2
安徽省石台县分离的日本血吸虫线粒体基因组结构注释
基因 Gene | 位置/nt Position/nt | 长度/bp Length/bp | 基因间隔/bp Intergenic sequences/bp | 起始/终止密码子 Start and stop codons | 反密码子 Anticodons | 氨基酸数目 No. amino acid | (A + T)/% |
---|---|---|---|---|---|---|---|
trnR | 1~65 | 65 | 11 | TCG | 66.15 | ||
nad5 | 77~1 663 | 1 587 | 42 | ATG/TAG | 528 | 73.03 | |
trnG | 1 706~1 775 | 70 | 7 | TCC | 70.00 | ||
cox3 | 1 783~2 433 | 651 | 14 | ATG/TAA | 216 | 72.35 | |
trnE | 2 448~2 516 | 69 | 9 | TTC | 62.32 | ||
trnH | 2 526~2 590 | 65 | 5 | GCG | 75.38 | ||
cob | 2 596~3 711 | 1 116 | 34 | ATG/TAA | 371 | 71.06 | |
nad4L | 3 746~4 009 | 264 | -37 | ATG/TAA | 87 | 73.48 | |
nad4 | 3 973~5 247 | 1 275 | 31 | ATG/TAA | 424 | 70.67 | |
trnQ | 5 279~5 345 | 67 | 62 | TTG | 58.21 | ||
trnF | 5 408~5 468 | 61 | 0 | GAA | 65.57 | ||
trnM | 5 469~5 535 | 67 | 0 | CAT | 73.13 | ||
atp6 | 5 536~6 054 | 519 | 15 | ATG/TAA | 172 | 72.45 | |
nad2 | 6 070~6 924 | 855 | 3 | ATG/TAA | 284 | 72.87 | |
trnA | 6 928~6 995 | 68 | 18 | TGC | 73.53 | ||
trnD | 7 014~7 078 | 65 | 1 | GTC | 63.08 | ||
nad1 | 7 080~7 982 | 891 | -1 | ATG/TAG | 296 | 70.93 | |
trnN | 7 982~8 046 | 65 | 22 | GTT | 67.69 | ||
trnP | 8 069~8 134 | 66 | 37 | GAA | 77.27 | ||
trnI | 8 172~8 237 | 66 | 12 | GAT | 57.58 | ||
trnK | 8 250~8 320 | 71 | 3 | CTT | 76.06 | ||
nad3 | 8 324~8 683 | 360 | 9 | ATG/TAG | 119 | 76.94 | |
trnW | 8 693~8 763 | 71 | 19 | TCA | 63.38 | ||
trnV | 8 783~8 848 | 66 | 8 | TAC | 69.7 | ||
trnS1 | 8 857~8 919 | 63 | 6 | GCT | 69.84 | ||
cox1 | 8 926~10 569 | 1 644 | 60 | GTG/TAG | 547 | 68.49 | |
trnT | 10 630~10 698 | 69 | 0 | TGT | 73.91 | ||
rrnL | 10 699~11 714 | 1 016 | 0 | 68.9 | |||
trnC | 11 715~11 776 | 62 | 1 | GCA | 72.58 | ||
rrnS | 11 778~12 518 | 741 | 4 | 66.67 | |||
cox2 | 12 523~13 131 | 609 | 10 | ATG/TAA | 202 | 69.13 | |
nad6 | 13 142~13 600 | 459 | 68 | ATG/TAA | 152 | 76.03 | |
trnY | 13 669~13 735 | 67 | 14 | GTA | 71.64 | ||
trnL1 | 13 750~13 819 | 70 | 0 | TAG | 67.14 | ||
trnS2 | 13 820~13 887 | 68 | 129 | TAA | 75 | ||
trnL2 | 14 017~14 084 | 68 | 1 | CAA | 61.76 |
表3
安徽省石台县分离的日本血吸虫线粒体基因组核苷酸组成
基因序列 Nucleotide sequence | A/% | T (U)/% | G/% | C/% | (A + T)/% | (G + C)/% | AT-skew | GC-skew |
---|---|---|---|---|---|---|---|---|
全基因组 Overall | 25.14 | 46.21 | 20.37 | 8.28 | 71.35 | 28.65 | -0.296 | 0.422 |
蛋白编码基因 Protein-coding gene | 23.31 | 48.26 | 20.60 | 7.83 | 71.57 | 28.43 | -0.349 | 0.451 |
密码子第一位点 Codon 1 | 26.63 | 41.11 | 24.08 | 8.18 | 67.74 | 32.26 | -0.214 | 0.493 |
密码子第二位点 Codon 2 | 19.01 | 48.65 | 19.94 | 12.40 | 67.65 | 32.35 | -0.438 | 0.233 |
密码子第三位点 Codon 3 | 24.31 | 55.01 | 17.77 | 2.91 | 79.33 | 20.67 | -0.387 | 0.720 |
tRNA基因 tRNA genes | 29.20 | 39.48 | 20.97 | 10.35 | 68.69 | 31.31 | -0.150 | 0.339 |
rRNA基因 rRNA genes | 29.76 | 38.19 | 20.72 | 11.33 | 67.96 | 32.04 | -0.124 | 0.293 |
表4
安徽省石台县分离的日本血吸虫蛋白编码基因核苷酸组成
基因 Gene | A/% | T/% | G/% | C/% | (G + C)/% | AT-skew | GC-skew |
---|---|---|---|---|---|---|---|
nad5 | 21.30 | 51.73 | 20.54 | 6.43 | 26.97 | -0.417 | 0.523 |
cox3 | 23.35 | 49.00 | 19.35 | 8.30 | 27.65 | -0.355 | 0.400 |
cob | 23.48 | 47.58 | 20.34 | 8.60 | 28.94 | -0.339 | 0.406 |
nad4L | 25.38 | 48.10 | 19.70 | 6.82 | 26.52 | -0.309 | 0.486 |
nad4 | 23.92 | 46.74 | 21.18 | 8.16 | 29.33 | -0.323 | 0.444 |
atp6 | 23.32 | 49.13 | 18.88 | 8.67 | 27.55 | -0.356 | 0.371 |
nad2 | 21.05 | 51.81 | 20.24 | 6.90 | 27.13 | -0.422 | 0.491 |
nad1 | 25.03 | 45.90 | 22.00 | 7.07 | 29.07 | -0.294 | 0.514 |
nad3 | 23.89 | 53.06 | 18.05 | 5.00 | 23.06 | -0.379 | 0.566 |
cox1 | 22.57 | 45.92 | 21.96 | 9.55 | 31.51 | -0.341 | 0.394 |
cox2 | 27.75 | 41.38 | 21.35 | 9.52 | 30.87 | -0.197 | 0.383 |
nad6 | 24.18 | 51.86 | 18.08 | 5.88 | 23.97 | -0.364 | 0.509 |
[1] |
LoVerde PT. Schistosomiasis[J]. Adv Exp Med Biol, 2019, 1154: 45-70.
doi: 10.1007/978-3-030-18616-6_3 pmid: 31297759 |
[2] |
Lo NC, Bezerra FSM, Colley DG, et al. Review of 2022 WHO guidelines on the control and elimination of schistosomiasis[J]. Lancet Infect Dis, 2022, 22(11): e327-e335.
doi: 10.1016/S1473-3099(22)00221-3 pmid: 35594896 |
[3] |
Kura K, Ayabina D, Hollingsworth TD, et al. Determining the optimal strategies to achieve elimination of transmission for Schistosoma mansoni[J]. Parasit Vectors, 2022, 15(1): 55.
doi: 10.1186/s13071-022-05178-x |
[4] |
Hassan AS, Perera DJ, Ward BJ, et al. Therapeutic activity of a Salmonella-vectored Schistosoma mansoni vaccine in a mouse model of chronic infection[J]. Vaccine, 2021, 39(39): 5580-5588.
doi: 10.1016/j.vaccine.2021.08.031 pmid: 34412919 |
[5] |
Caldwell N, Afshar R, Baragaña B, et al. Perspective on schistosomiasis drug discovery: highlights from a schistosomiasis drug discovery workshop at wellcome collection, london, September 2022[J]. ACS Infect Dis, 2023, 9(5): 1046-1055.
doi: 10.1021/acsinfecdis.3c00081 pmid: 37083395 |
[6] |
Mcmanus DP, Dunne DW, Sacko M, et al. Schistosomiasis[J]. Nat Rev Dis Primers, 2018, 4(1): 14.
doi: 10.1038/s41572-018-0017-4 pmid: 30093694 |
[7] | Dong Y, Zhang Y, Du CH, et al. Emergency treatment of schistosomiasis outbreaks in transmission-inter-rupted mountainous and hilly areas[J]. Chin J Schisto Control, 2019, 31(3): 323-325, 328. (in Chinese) |
(董毅, 张云, 杜春红, 等. 山丘型传播阻断地区血吸虫病突发疫情的应急处置[J]. 中国血吸虫病防治杂志, 2019, 31(3): 323-325, 328.) | |
[8] |
Zou HY, Yu QF, Qiu C, et al. Meta-analyses of Schistosoma japonicum infections in wild rodents across China over time indicates a potential challenge to the 2030 elimination targets[J]. PLoS Negl Trop Dis, 2020, 14(9): e0008652.
doi: 10.1371/journal.pntd.0008652 |
[9] | Guo KW, Niu AO. Studies on the genetic variation of two mitochondrial DNA molecules of Schistosoma japonicum[J]. Chin J Parasitol Parasit Dis, 2004, 22(5): 300-302. (in Chinese) |
(郭凯文, 牛安欧. 日本血吸虫线粒体DNA两个分子的遗传变异[J]. 中国寄生虫学与寄生虫病杂志, 2004, 22(5): 300-302.) | |
[10] | Tao W, Chen XF, Wu MY, et al. Effect of cementing ditch-based project on schistosomiasis control in Dingshen River Basin in Shitai County[J]. Chin J Schisto Control, 2018, 30(2): 222-225. (in Chinese) |
(陶伟, 陈雪峰, 吴明耀, 等. 石台县丁莘河流域水库灌区水利血防工程血吸虫病防治效果分析[J]. 中国血吸虫病防治杂志, 2018, 30(2): 222-225.) | |
[11] |
Lu DB, Wang TP, Rudge JW, et al. Contrasting Reservoirs for Schistosoma japonicum between marshland and hilly regions in Anhui, China: a two-year longitudinal parasitological survey[J]. Parasitology, 2010, 137(1): 99-110.
doi: 10.1017/S003118200999103X |
[12] |
Lu DB, Wang TP, Rudge JW, et al. Evolution in a multi-host parasite: chronobiological circadian rhythm and population genetics of Schistosoma japonicum cercariae indicates contrasting definitive host reservoirs by habitat[J]. Int J Parasitol, 2009, 39(14): 1581-1588.
doi: 10.1016/j.ijpara.2009.06.003 |
[13] |
Jones BP, Norman BF, Borrett HE, et al. Author correction: divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale[J]. Sci Rep, 2021, 11(1): 1246.
doi: 10.1038/s41598-021-81050-9 pmid: 33414475 |
[14] |
Lawton SP, Hirai H, Ironside JE, et al. Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma[J]. Parasit Vectors, 2011, 4: 131.
doi: 10.1186/1756-3305-4-131 pmid: 21736723 |
[15] |
Chen XX, Yuan ZW, Li C, et al. Structural features and phylogenetic implications of Cicadellidae subfamily and two new mitogenomes leafhoppers[J]. PLoS One, 2021, 16(5): e0251207.
doi: 10.1371/journal.pone.0251207 |
[16] |
Donath A, Jühling F, Al-Arab M, et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes[J]. Nucleic Acids Res, 2019, 47(20): 10543-10552.
doi: 10.1093/nar/gkz833 pmid: 31584075 |
[17] |
Greiner S, Lehwark P, Bock R. Organellar Genome DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes[J]. Nucle Acid Res, 2019, 47(W1): W59-W64.
doi: 10.1093/nar/gkz238 |
[18] | He JC, Chen XF, Wang TP, et al. Investigation on prevalence of Schistosoma japonicum infections in wild mice in Shitai County, Anhui Province, 2018[J]. Chin J Schisto Control, 2022, 34(6): 622-625. (in Chinese) |
(何家昶, 陈雪峰, 汪天平, 等. 2018年安徽省石台县野鼠血吸虫感染调查[J]. 中国血吸虫病防治杂志, 2022, 34(6): 622-625.) | |
[19] | Li ZJ, Ge J, Dai JR, et al. Biology and control of snail intermediate host of Schistosoma japonicum in the People’s republic of China[J]. Adv Parasitol, 2016, 92: 197-236. |
[20] |
Wu W, Feng AC, Huang YX. Research and control of advanced schistosomiasis japonica in China[J]. Parasitol Res, 2015, 114(1): 17-27.
doi: 10.1007/s00436-014-4225-x pmid: 25403379 |
[21] |
Li XH, Xu YX, Vance G, et al. Evidence that Rhesus macaques self-cure from a Schistosoma japonicum infection by disrupting worm esophageal function: a new route to an effective vaccine?[J]. PLoS Negl Trop Dis, 2015, 9(7): e0003925.
doi: 10.1371/journal.pntd.0003925 |
[22] |
Luo F, Yin MB, Mo XJ, et al. An improved genome assembly of the fluke Schistosoma japonicum[J]. PLoS Negl Trop Dis, 2019, 13(8): e0007612.
doi: 10.1371/journal.pntd.0007612 |
[23] |
Zarowiecki MZ, Huyse T, Littlewood DTJ. Making the most of mitochondrial genomes: markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes∶Digenea)[J]. Int J Parasitol, 2007, 37(12): 1401-1418.
pmid: 17570370 |
[24] | Han LH, Ke XR, Qin XY, et al. Mitogenome characteristics and evolution of Cordyceps[J]. Southwest China J Agric Sci, 2022, 35(7): 1520-1528. (in Chinese) |
(韩利红, 柯欣茹, 秦相月, 等. 虫草属线粒体基因组特征及系统发育[J]. 西南农业学报, 2022, 35(7): 1520-1528.) | |
[25] | Nahum LA, Mourão MM, Oliveira G. New frontiers in schistosoma genomics and transcriptomics[J]. J Parasitol Res, 2012, 2012: 849132. |
[26] |
Littlewood DTJ, Lockyer AE, Webster BL, et al. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms[J]. Mol Phylogenet Evol, 2006, 39(2): 452-467.
pmid: 16464618 |
[27] |
Yin MB, Zheng HX, Su J, et al. Co-dispersal of the blood fluke Schistosoma japonicum and Homo sapiens in the Neolithic Age[J]. Sci Rep, 2015, 5: 18058.
doi: 10.1038/srep18058 |
[28] |
Li J, Chen F, Sugiyama H, et al. A specific indel marker for the Philippines Schistosoma japonicum revealed by analysis of mitochondrial genome sequences[J]. Parasitol Res, 2015, 114(7): 2697-2704.
doi: 10.1007/s00436-015-4475-2 |
[29] |
Zhao QP, Jiang MS, Littlewood DTJ, et al. Distinct genetic diversity of Oncomelania hupensis, intermediate host of Schistosoma japonicum in mainland China as revealed by ITS sequences[J]. PLoS Negl Trop Dis, 2010, 4(3): e611.
doi: 10.1371/journal.pntd.0000611 |
[30] |
Yang K, Wang XH, Yang GJ, et al. An integrated approach to identify distribution of Oncomelania hupensis, the intermediate host of Schistosoma japonicum, in a mountainous region in China[J]. Int J Parasitol, 2008, 38(8/9): 1007-1016.
doi: 10.1016/j.ijpara.2007.12.007 |
[31] |
Turgeon J, Bernatchez L. Clinal variation at microsatellite loci reveals historical secondary intergradation between glacial races of Coregonus artedi (Teleostei∶Coregoninae)[J]. Evolution, 2001, 55(11): 2274-2286.
pmid: 11794787 |
[32] | Hu BJ, Xie HL, Li SM, et al. Measures and achievements of schistosomiasis control in the Yangtze River Basin[J]. Chin J Schisto Control, 2018, 30(5): 592-595. (in Chinese) |
(胡本骄, 谢红玲, 李胜明, 等. 长江流域血吸虫病防治举措与成效[J]. 中国血吸虫病防治杂志, 2018, 30(5): 592-595.) | |
[33] |
Yin MB, Li HY, McManus DP, et al. Geographical genetic structure of Schistosoma japonicum revealed by analysis of mitochondrial DNA and microsatellite markers[J]. Parasit Vectors, 2015, 8: 150.
doi: 10.1186/s13071-015-0757-x |
[34] |
Ji RX, Yu X, Ren TM, et al. Genetic diversity and population structure of Caryopteris mongholica revealed by reduced representation sequencing[J]. BMC Plant Biol, 2022, 22(1): 297.
doi: 10.1186/s12870-022-03681-y |
[1] | 高澜琳, 谢汉国, 林陈鑫, 江典伟, 蔡武卫, 郑丹. 基于COⅠ的褐云玛瑙螺广州管圆线虫系统进化分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 756-759. |
[2] | 谭潇, 朱琪, 刘众齐, 李佳, 彭丁晋. 日本血吸虫Sj26gst mRNA候选疫苗的免疫原性研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 546-551. |
[3] | 刘华熳, Bikash Giri, 方传涛, 郑亚萌, 吴慧欣, 曾敏浩, 李姗, 程国锋. 日本血吸虫m6A修饰的性别相关circRNA鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 552-558. |
[4] | 兰炜明, 徐慧, 徐银, 邱婷婷, 谢曙英, 邓凤林, 胡绍良, 刘欢, 郭家钢, 曾小军. 荧光定量PCR用于日本血吸虫感染高危环境早期预警的研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 502-505. |
[5] | 李奔福, 王正青, 徐倩, 字金荣, 严信留, 彭佳, 李建雄, 蔡璇, 吴方伟, 杨亚明. 云南省细粒棘球绦虫线粒体co1和nd1基因序列分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 306-311. |
[6] | 王晓玲, 张卫, 易存, 陈祥宇, 杨文彬, 徐斌, 胡薇. SjGPR89蛋白对日本血吸虫生长发育的影响[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 701-707. |
[7] | 陈果, 朱丹丹, 段义农. 免疫调节蛋白B7家族在日本血吸虫感染免疫调节中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 774-779. |
[8] | 严晓岚, 闻礼永, 熊彦红, 郑彬, 张剑锋, 汪天平, 俞丽玲, 许国章, 林丹丹, 周晓农. 《日本血吸虫抗体检测标准 酶联免疫吸附试验法》解读[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 798-800. |
[9] | 汤宪时, 季文翔, 熊春蓉, 周永华, 许永良, 仝德胜. 晚期日本血吸虫感染小鼠焦虑样行为学研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 622-628. |
[10] | 刘雅芳, 陈彬, 芦新焱, 李光华, 杜春红, 姜丹丹, 杨兴. 云南微小扇头蜱线粒体基因组全序列测定与分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 677-681. |
[11] | 梁乐, 张璟, 沈玉娟, 胡媛, 曹建平. 环鸟苷酸腺苷酸促日本血吸虫感染小鼠肝虫卵肉芽肿形成及纤维化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 441-445. |
[12] | 章孝成, 高元, 胡媛, 曹建平. 日本血吸虫感染小鼠脾多核型髓源抑制细胞变化的初步研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 330-336. |
[13] | 高元, 章孝成, 胡媛, 曹建平. 自然杀伤细胞抑制血吸虫病肝纤维化作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 168-174. |
[14] | 洪炀, 林矫矫. 日本血吸虫蛋白质组学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 725-730. |
[15] | 黄爱龙, 张蓓, 沈函宇, 陈果, 李静, 朱丹丹, 段义农. 日本血吸虫感染小鼠肝髓样细胞触发受体-1的表达及其功能[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 621-626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||