[1] | Vial HJ, Gorenflot A. Chemotherapy against babesiosis[J]. Vet Parasitol, 2006, 138(1/2): 147-160. | [2] | Zhou X, Wang H, Xue JB, et al. Epidemic and research progress of babesiosis[J]. Chin J Schisto Control, 2019, 31(1): 63-70. (in Chinese) | | (周霞, 王慧, 薛靖波, 等. 国内外巴贝虫病流行现状与研究进展[J]. 中国血吸虫病防治杂志, 2019, 31(1): 63-70.) | [3] | Schnittger L, Rodriguez AE, Florin-Christensen M, et al. Babesia: a world emerging[J]. Infect Genet Evol, 2012, 12(8):1788-1809. | [4] | Goethert HK. What Babesia microti is now[J]. Pathogens, 2021, 10(9): 1168. | [5] | Song P, Cai YC, Lu Y, et al. Establishment of mouse infection model of Babesia microti Lishui isolate and consequent pathological changes[J]. Chin J Parasitol Parasit Dis, 2022, 40(4): 493-499.. (in Chinese) | | (宋鹏, 蔡玉春, 卢艳, 等. 田鼠巴贝虫丽水分离株小鼠感染模型的建立及其病理变化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 493-499.) | [6] | Yao LN, Ruan W, Zeng CY, et al. Pathogen identification and clinical diagnosis for one case infected with Babesia[J]. Chin J Parasitol Parasit Dis, 2012, 30(2): 118-121. (in Chinese) | | (姚立农, 阮卫, 曾长佑, 等. 1例人感染巴贝虫的诊断与病原体鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(2): 118-121.) | [7] | Bloch EM, Kumar S, Krause PJ. Persistence of Babesia microti infection in humans[J]. Pathogens, 2019, 8(3): 102. | [8] | Krause PJ. Human babesiosis[J]. Int J Parasitol, 2019, 49(2): 165-174. | [9] | Wittner M, Rowin KS, Tanowitz HB, et al. Successful chemotherapy of transfusion babesiosis[J]. Ann Intern Med, 1982, 96(5): 601-604. | [10] | Krause PJ, Lepore T, Sikand VK, et al. Atovaquone and azithromycin for the treatment of babesiosis[J]. N Engl J Med, 2000, 343(20): 1454-1458. | [11] | Yin M, Zhang HB, Tao Y, et al. Evaluation on the in vivo efficacy of malarone and atovaquoneazithromycin combination against Babesia microti in mice under different immune status[J]. Chin J Parasitol Parasit Dis, 2021, 39(5): 659-665, 673. (in Chinese) | | (殷梦, 张皓冰, 陶奕, 等. 马拉龙和阿托伐醌 + 阿奇霉素在不同免疫状态小鼠体内的抗田鼠巴贝虫药效评价[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 659-665, 673.) | [12] | Wormser GP, Prasad A, Neuhaus E, et al. Emergence of resistance to azithromycin-atovaquone in immunocompromised patients with Babesia microti infection[J]. Clin Infect Dis, 2010, 50(3): 381-386. | [13] | Shaw PE. Peptidyl-prolyl cis/trans isomerases and transcription: is there a twist in the tail?[J]. EMBO Rep, 2007, 8(1): 40-45. | [14] | Schiene-Fischer C. Multidomain peptidyl prolyl cis/trans isomerases[J]. Biochim Biophys Acta, 2015, 1850(10): 2005-2016. | [15] | Solbach W, Forberg K, Kammerer E, et al. Suppressive effect of cyclosporin A on the development of Leishmania tropica-induced lesions in genetically susceptible BALB/c mice[J]. J Immunol, 1986, 137(2): 702-707. | [16] | Bell A, Wernli B, Franklin RM. Roles of peptidyl-prolyl cis-trans isomerase and calcineurin in the mechanisms of antimalarial action of cyclosporin A, FK506, and rapamycin[J]. Biochem Pharmacol, 1994, 48(3): 495-503. | [17] | Perrone AE, Milduberger N, Fuchs AG, et al. A functional analysis of the cyclophilin repertoire in the protozoan parasite Trypanosoma cruzi[J]. Biomolecules, 2018, 8(4): 132. | [18] | Krause PJ, McKay K, Gadbaw J, et al. Increasing health burden of human babesiosis in endemic sites[J]. Am J Trop Med Hyg, 2003, 68(4): 431-436. | [19] | Zhou X, Xia S, Huang JL, et al. Human babesiosis, an emerging tick-borne disease in the People’s Republic of China[J]. Parasit Vectors, 2014, 7(1): 509. | [20] | Wormser GP, Dattwyler RJ, Shapiro ED, et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2006, 43(9): 1089-1134. | [21] | Sanchez E, Vannier E, Wormser GP, et al. Diagnosis, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: a review[J]. JAMA, 2016, 315(16): 1767-1777. | [22] | Harikishore A, Yoon HS. Immunophilins: structures, mechanisms and ligands[J]. Curr Mol Pharmacol, 2015, 9(1): 37-47. | [23] | Liu J, Farmer JD Jr, Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes[J]. Cell, 1991, 66(4): 807-815. | [24] | Gavigan CS, Kiely SP, Hirtzlin J, et al. Cyclosporin-binding proteins of Plasmodium falciparum[J]. Int J Parasitol, 2003, 33(9): 987-996. | [25] | Ibrahim HM, Xuan XN, Nishikawa Y. Toxoplasma gondii cyclophilin 18 regulates the proliferation and migration of murine macrophages and spleen cells[J]. Clin Vaccine Immunol, 2010, 17(9): 1322-1329. | [26] | Guo ZY, Jing CX, Huang XY, et al. The bioinformatic analysis of CyPs from Cryptosporidium parvum[J]. J Trop Med, 2018, 18(10): 1263-1269. (in Chinese) | | (郭志云, 荆春霞, 黄小英, 等. 微小隐孢子虫CyPs家族蛋白的生物信息学分析[J]. 热带医学杂志, 2018, 18(10): 1263-1269.) | [27] | Potenza M, Galat A, Minning TA, et al. Analysis of the Trypanosoma cruzi cyclophilin gene family and identification of Cyclosporin A binding proteins[J]. Parasitology, 2006, 132(Pt 6): 867-882. | [28] | Krücken J, Greif G, von Samson-Himmelstjerna G. In silico analysis of the cyclophilin repertoire of apicomplexan parasites[J]. Parasit Vectors, 2009, 2(1): 27. | [29] | Deng WW, Wang L, Xiong Y, et al. The novel secretory protein CGREF1 inhibits the activation of AP-1 transcriptional activity and cell proliferation[J]. Int J Biochem Cell Biol, 2015, 65: 32-39. | [30] | Liao YT, Luo D, Peng KL, et al. Cyclophilin A: a key player for etiological agent infection[J]. Appl Microbiol Biotechnol, 2021, 105(4): 1365-1377. | [31] | Zhang Y, Jiang N, Lu HJ, et al. Proteomic analysis of Plasmodium falciparum schizonts reveals heparin-binding merozoite proteins[J]. J Proteome Res, 2013, 12(5): 2185-2193. |
|