[1] | World Health Organization. World malaria report 2022[R]. Geneva: WHO, 2022. | [2] | Wang YN, Zhang YM, Lin YX, et al. Plasmodium falciparum resistance to artemisinin drugs—The latest research progress[J]. Chin J Zoonoses, 2014, 30(2): 195-198. (in Chinese) | | (王颖娜, 张艳梅, 蔺应学, 等. 恶性疟原虫对青蒿素类药物抗药性的最新研究进展[J]. 中国人兽共患病学报, 2014, 30(2): 195-198.) | [3] | World Health Organization. Guideline for treatment of malaria,third edition[R]. Geneva: WHO, 2015. | [4] | Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western Cambodia[J]. N Engl J Med, 2008, 359(24): 2619-2620. | [5] | Yang CJ. A case report of falciparum malaria resistance to artemether[J]. J Pract Parasit Dis, 2000(3): 101. (in Chinese) | | (杨沧江. 1例恶性疟对蒿甲醚抗性报道[J]. 实用寄生虫病杂志, 2000(3): 101.) | [6] | Su LG, Wang Y, Jia J. Anti-artemether falciparum malaria in 2 cases[J]. Chin J Parasit Dis Control, 2001(1): 66. (in Chinese) | | (苏林光, 王英, 贾杰. 抗蒿甲醚恶性疟2例[J]. 中国寄生虫病防治杂志, 2001(1): 66.) | [7] | Yang HL, Liu DQ, Huang KG, et al. In vitro sensitivity of Plasmodium falciparum to derivativesof artemisinin, pyronaridine and chloroquine in Yunnan[J]. Chin J Parasitol Parasit Dis, 1997, 15(5): 292-296. (in Chinese) | | (杨恒林, 刘德全, 黄开国, 董莹, 杨品芳, 杨亚明, 廖明铮, 张春勇, 刘瑞君. 云南省恶性疟原虫对青蒿素类药物及咯萘啶与氯喹敏感性的体外测定[J]. 中国寄生虫学与寄生虫病杂志, 1997, 15(5): 292-296.) | [8] | Webster HK, Boudreau EF, Pavanand K, et al. Antimalarial drug susceptibility testing of Plasmodium falciparum in Thailand using a microdilution radioisotope method[J]. Am J Trop Med Hyg, 1985, 34(2): 228-235. | [9] | Denis MB, Tsuyuoka R, Lim P, et al. Efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia[J]. Trop Med Int Health. 2006, 11(12):1800-1807. | [10] | Tun KM, Jeeyapant A, Imwong M, et al. Parasite clearance rates in Upper Myanmar indicate a distinctive artemisinin resistance phenotype: a therapeutic efficacy study[J]. Malar J, 2016, 15: 185. | [11] | Rueangweerayut R, Phyo AP, Uthaisin C, et al. Pyronaridine-artesunate versus mefloquine plus artesunate for malaria[J]. N Engl J Med, 2012, 366(14): 1298-1309. | [12] | Zhang YM. Research status of drug resistance genes of Plasmodium falciparum[J]. Occup Health, 2020, 36(14): 2001-2003, 2007. (in Chinese) | | (张咏梅. 恶性疟原虫抗药性基因研究现状[J]. 职业与健康, 2020, 36(14): 2001-2003, 2007.) | [13] | World Health Organization. Methods for surveillance of antimalarial drug efficacy[R]. Geneva: WHO, 2009. | [14] | World Health Organization. Methods and techniques for clinical trials on antimalarial drug efficacy: genotyping to identify parasite populations[R]. Geneva: WHO, 2007. | [15] | Zwang J, Olliaro P, Barennes H, et al. Efficacy of artesunate-amodiaquine for treating uncomplicated falciparum malaria in sub-Saharan Africa: a multi-centre analysis[J]. Malar J, 2009, 8: 203. | [16] | Ngasala BE, Malmberg M, Carlsson AM, et al. Effectiveness of artemether-lumefantrine provided by community health workers in under-five children with uncomplicated malaria in rural Tanzania: an open label prospective study[J]. Malar J, 2011, 10: 64. | [17] | Mwesigwa J, Parikh S, McGee B, et al. Pharmacokinetics of artemether-lumefantrine and artesunate-amodiaquine in children in Kampala, Uganda[J]. Antimicrob Agents Chemother, 2010, 54(1): 52-59. | [18] | Adjei GO, Kristensen K, Goka BQ, et al. Effect of concomitant artesunate administration and cytochrome P4502C8 polymorphisms on the pharmacokinetics of amodiaquine in Ghanaian children with uncomplicated malaria[J]. Antimicrob Agents Chemother, 2008, 52(12): 4400-4406. | [19] | Chotsiri P, White NJ, Tarning J. Pharmacokinetic considerations in seasonal malaria chemoprevention[J]. Trends Parasitol, 2022, 38(8): 673-682. | [20] | Ding J, Coldiron ME, Assao B, et al. Adherence and population pharmacokinetic properties of amodiaquine when used for seasonal malaria chemoprevention in African children[J]. Clin Pharmacol Ther, 2020, 107(5): 1179-1188. | [21] | World Health Organization. World malaria report 2016[R]. Geneva: WHO, 2016. | [22] | Grandesso F, Guindo O, Woi Messe L, et al. Efficacy of artesunate-amodiaquine, dihydroartemisinin-piperaquine and artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Maradi, Niger[J]. Malar J, 2018, 17(1): 52. | [23] | Ibrahim ML, Sadou F, Daou M, et al. Comparison of the therapeutic efficiency and of the tolerance of the artemether-lumefantrine and artesunate-amodiaquine combination in Niger[J]. Mali Med, 2016, 31(1): 1-7. | [24] | Ibrahima I. étude de l’efficacité thérapeutique et de la tolérance de l’artéméther-luméfantrine et de l’artésunate-amodiaquine au Niger[J]. Bull Soc Pathol Exot, 2020, 113(1): 17-23. | [25] | Riloha Rivas M, Warsame M, Mbá Andeme R, et al. Therapeutic efficacy of artesunate-amodiaquine and artemether-lumefantrine and polymorphism in Plasmodium falciparum kelch13-propeller gene in Equatorial Guinea[J]. Malar J, 2021, 20(1): 1-10. | [26] | Dorkenoo AM, Yehadji D, Agbo YM, et al. Therapeutic efficacy trial of artemisinin-based combination therapy for the treatment of uncomplicated malaria and investigation of mutations in k13 propeller domain in Togo, 2012—2013[J]. Malar J, 2016, 15: 331. | [27] | Pembet Singana B, Casimiro PN, Matondo Diassivi B, et al. Prevalence of malaria among febrile patients and assessment of efficacy of artemether-lumefantrine and artesunate-amodiaquine for uncomplicated malaria in Dolisie, Republic of the Congo[J]. Malar J, 2022, 21(1): 137. | [28] | van den Broek I, Kitz C, Al Attas S, et al. Efficacy of three artemisinin combination therapies for the treatment of uncomplicated Plasmodium falciparum malaria in the Republic of Congo[J]. Malar J, 2006, 5: 113. | [29] | Ndounga M, Mayengue PI, Casimiro PN, et al. Artesunate-amodiaquine efficacy in Congolese children with acute uncomplicated falciparum malaria in Brazzaville[J]. Malar J, 2013, 12: 53. | [30] | Ndounga M, Pembe Issamou Mayengue, Casimiro PN, et al. Artesunate-amodiaquine versus artemether-lumefantrine for the treatment of acute uncomplicated malaria in Congolese children under 10 years old living in a suburban area: a randomized study[J]. Malar J, 2015, 14: 423. | [31] | Singana BP, Bogreau H, Matondo BD, et al. Malaria burden and anti-malarial drug efficacy in Owando, northern Congo[J]. Malar J, 2016, 15: 16. | [32] | Dimbu PR, Horth R, Candido ALM, et al. Continued low efficacy of artemether-lumefantrine in Angola in 2019[J]. Antimicrob Agents Chemother, 2021, 65(2): e01949-e01920. | [33] | Msellem M, Morris U, Soe A, et al. Increased sensitivity of Plasmodium falciparum to artesunate/amodiaquine despite 14 years as first-line malaria treatment, Zanzibar[J]. Emerg Infect Dis, 2020, 26(8): 1767-1777. | [34] | Beavogui AH, Diawara EY, Cherif MS, et al. Selection of pfcrt 76t and pfmdr1 86y mutant Plasmodium falciparum after treatment of uncomplicated malaria with artesunate-amodiaquine in republic of Guinea[J]. J Parasitol, 2021, 107(5): 778-782. | [35] | Abuaku B, Duah N, Quaye L, et al. Therapeutic efficacy of artesunate-amodiaquine and artemether-lumefantrine combinations in the treatment of uncomplicated malaria in two ecological zones in Ghana[J]. Malar J, 2016, 15: 6. | [36] | Diallo MA, Yade MS, Ndiaye YD, et al. Efficacy and safety of artemisinin-based combination therapy and the implications of Pfkelch13 and Pfcoronin molecular markers in treatment failure in Senegal[J]. Sci Rep, 2020, 10: 8907. | [37] | Ouldabdallahi M, Alew I, Salem MSOA, et al. Efficacy of artesunate-amodiaquine for the treatment of acute uncomplicated falciparum malaria in southern Mauritania[J]. Malar J, 2014, 13(1): 1-6. | [38] | Diarra Y, Koné O, Sangaré L, et al. Therapeutic efficacy of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Mali, 2015—2016[J]. Malar J, 2021, 20(1): 1-13. | [39] | Lingani M, Bonkian LN, Yerbanga I, et al. In vivo/ex vivo efficacy of artemether-lumefantrine and artesunate-amodiaquine as first-line treatment for uncomplicated falciparum malaria in children: an open label randomized controlled trial in Burkina Faso[J]. Malar J, 2020, 19(1): 1-13. | [40] | Smith SJ, Kamara ARY, Sahr F, et al. Efficacy of artemisinin-based combination therapies and prevalence of molecular markers associated with artemisinin, piperaquine and sulfadoxine-pyrimethamine resistance in Sierra Leone[J]. Acta Trop, 2018, 185: 363-370. | [41] | Djallé D, Njuimo SP, Manirakiza A, et al. Efficacy and safety of artemether + lumefantrine, artesunate + sulphamethoxypyrazine-pyrimethamine and artesunate + amodiaquine and sulphadoxine-pyrimethamine + amodiaquine in the treatment of uncomplicated falciparum malaria in Bangui, Central African Republic: a randomized trial[J]. Malar J, 2014, 13: 9. | [42] | Falade CO, Dada-Adegbola HO, Ogunkunle OO, et al. Evaluation of the comparative efficacy and safety of artemether-lumefantrine, artesunate-amodiaquine and artesunate-amodiaquine-chlorpheniramine (ArtemocloTM) for the treatment of acute uncomplicated malaria in Nigerian children[J]. Med Princ Pract, 2014, 23(3): 204-211. | [43] | Adegbite BR, Edoa JR, Honkpehedji YJ, et al. Monitoring of efficacy, tolerability and safety of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Lambaréné, Gabon: An open-label clinical trial[J]. Malar J, 2019, 18(1): 424. | [44] | Mandara CI, Francis F, Chiduo MG, et al. High cure rates and tolerability of artesunate-amodiaquine and dihydroartemisinin-piperaquine for the treatment of uncomplicated falciparum malaria in Kibaha and Kigoma, Tanzania[J]. Malar J, 2019, 18(1): 99. | [45] | Thwing JI, Odero CO, Odhiambo FO, et al. In-vivo efficacy of amodiaquine-artesunate in children with uncomplicated Plasmodium falciparum malaria in western Kenya[J]. Trop Med Int Health, 2009, 14(3): 294-300. | [46] | Abuaku B, Duah-Quashie NO, Quashie N, et al. Trends and predictive factors for treatment failure following artemisinin-based combination therapy among children with uncomplicated malaria in Ghana: 2005—2018[J]. BMC Infect Dis, 2021, 21(1): 1255. | [47] | Koko VS, Warsame M, Vonhm B, et al. Artesunate-amodiaquine and artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Liberia: in vivo efficacy and frequency of molecular markers[J]. Malar J, 2022, 21(1): 134. | [48] | Marwa K, Kapesa A, Baraka V, et al. Therapeutic efficacy of artemether-lumefantrine, artesunate-amodiaquine and dihydroartem-isinin-piperaquine in the treatment of uncomplicated Plasmodium falciparum malaria in Sub-Saharan Africa: a systematic review and meta-analysis[J]. PLoS One, 2022, 17(3): e0264339. | [49] | Sasi P, Abdulrahaman A, Mwai L, et al. In vivo and In vitro efficacy of amodiaquine against Plasmodium falciparum in an area of continued use of 4-aminoquinolines in east Africa[J]. J Infect Dis, 2009, 199(11): 1575-1582. | [50] | Menard D, Djalle D, Manirakiza A, et al. Drug-resistant malaria in Bangui, Central African Republic: an in vitro assessment[J]. Am J Trop Med Hyg, 2005, 73(2): 239-243. | [51] | Adjuik M, Agnamey P, Babiker A, et al. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial[J]. Lancet, 2002, 359(9315): 1365-1372. | [52] | Mutabingwa TK, Anthony D, Heller A, et al. Amodiaquine alone, amodiaquine + sulfadoxine-pyrimethamine, amodiaquine+artesunate, and artemether-lumefantrine for outpatient treatment of malaria in Tanzanian children: a four-arm randomised effectiveness trial[J]. Lancet, 2005, 365(9469): 1474-1480. | [53] | Otienoburu SD, Ma?ga-Ascofaré O, Schramm B, et al. Selection of Plasmodium falciparum pfcrt and pfmdr1 polymorphisms after treatment with artesunate-amodiaquine fixed dose combination or artemether-lumefantrine in Liberia[J]. Malar J, 2016, 15: 452. | [54] | Fr?berg G, J?rnhagen L, Morris U, et al. Decreased prevalence of Plasmodium falciparum resistance markers to amodiaquine despite its wide scale use as ACT partner drug in Zanzibar[J]. Malar J, 2012, 11: 321. | [55] | Happi CT, Gbotosho GO, Folarin OA, et al. Association between mutations in Plasmodium falciparum chloroquine resistance transporter and P. falciparum multidrug resistance 1 genes and in vivo amodiaquine resistance in P. falciparum malaria-infected children in Nigeria[J]. Am J Trop Med Hyg, 2006, 75(1): 155-161. | [56] | Okell LC, Reiter LM, Ebbe LS, et al. Emerging implications of policies on malaria treatment: genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether-lumefantrine and artesunate-amodiaquine in Africa[J]. BMJ Glob Health, 2018, 3(5): e000999. | [57] | Humphreys GS, Merinopoulos I, Ahmed J, et al. Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria[J]. Antimicrob Agents Chemother, 2007, 51(3): 991-997. | [58] | Venkatesan M, Gadalla NB, Stepniewska K, et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine[J]. Am J Trop Med Hyg, 2014, 91(4): 833-843. | [59] | Foguim FT, Bogreau H, Gendrot M, et al. Prevalence of mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, and association with ex vivo susceptibility to common anti-malarial drugs against African Plasmodium falciparum isolates[J]. Malar J, 2020, 19(1): 201. | [60] | Sa JM, Twu O. Protecting the malaria drug arsenal: halting the rise and spread of amodiaquine resistance by monitoring the PfCRT SVMNT type[J]. Malar J, 2010, 9: 374. | [61] | Alifrangis M, Dalgaard MB, Lusingu JP, et al. Occurrence of the Southeast Asian/south American SVMNT haplotype of the chloroquine-resistance transporter gene in Plasmodium falciparum in Tanzania[J]. J Infect Dis, 2006, 193(12): 1738-1741. | [62] | Gama BE, Pereira-Carvalho GA, Lutucuta Kosi FJ, et al. Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene[J]. Malar J, 2010, 9: 174. | [63] | Mekonnen SK, Aseffa A, Berhe N, et al. Return of chloroquine-sensitive Plasmodium falciparum parasites and emergence of chloroquine-resistant Plasmodium vivax in Ethiopia[J]. Malar J, 2014, 13: 244. | [64] | Ngassa Mbenda HG, Das A. Occurrence of multiple chloroquine-resistant Pfcrt haplotypes and emergence of the S(agt)VMNT type in Cameroonian Plasmodium falciparum[J]. J Antimicrob Chemother, 2013, 69(2): 400-403. | [65] | Holmgren G, Gil JP, Ferreira PM, et al. Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr1 86Y[J]. Infect Genet Evol, 2006, 6(4): 309-314. | [66] | World Health Organization. Guidelines for the treatment of malaria[R]. Second edition. Geneva: WHO, 2010. | [67] | Hodoameda P, Duah-Quashie NO, Hagan CO, et al. Plasmodium falciparum genetic factors rather than host factors are likely to drive resistance to ACT in Ghana[J]. Malar J, 2020, 19(1): 255. | [68] | Paganotti GM, Gallo BC, Verra F, et al. Human genetic variation is associated with Plasmodium falciparum drug resistance[J]. J Infect Dis, 2011, 204(11): 1772-1778. | [69] | Parikh S, Ouedraogo JB, Goldstein JA, et al. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa[J]. Clin Pharmacol Ther, 2007, 82(2): 197-203. | [70] | Backman JT, Filppula AM, Niemi M, et al. Role of cytochrome P450 2C8 in drug metabolism and interactions[J]. Pharmacol Rev, 2016, 68(1): 168-241. | [71] | Orrell C, Taylor WRJ, Offiaro P. Acute asymptomatic hepatitis in a healthy normal volunteer exposed to 2 oral doses of amodiaquine and artesunate[J]. Trans Royal Soc Trop Med Hyg, 2001, 95(5): 517-518. | [72] | LiverTox: Clinical and Research Information on drug-induced liver injury[R]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. | [73] | Markham LN, Giostra E, Hadengue A, et al. Emergency liver transplantation in amodiaquine-induced fulminant hepatitis[J]. Am J Trop Med Hyg, 2007, 77(1): 14-15. | [74] | World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy[R]. Geneva: WHO, 2018. |
|