[1] | Engel P, Moran NA. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiol Rev, 2013, 37(5): 699-735. | [2] | Hu ZY, Xia Q. Advances in the histology study, function and application of insect intestinal flora[J]. Biotechnol Bull, 2021, 37(1): 102-112. (in Chinese) | | ( 胡紫媛, 夏嫱. 昆虫肠道菌群组学研究及功能和应用进展[J]. 生物技术通报, 2021, 37(1): 102-112.) | [3] | Yun JH, Roh SW, Whon TW, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host[J]. Appl Environ Microbiol, 2014, 80(17): 5254-5264. | [4] | Wang WW, He C, Cui J, et al. Comparative analysis of the composition of intestinal bacterial communities in Dastarcus helophoroides fed different diets[J]. J Insect Sci, 2014, 14: 111. | [5] | Coon KL, Brown MR, Strand MR. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats[J]. Mol Ecol, 2016, 25(22): 5806-5826. | [6] | Gimonneau G, Tchioffo MT, Abate L, et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages[J]. Infect Genet Evol, 2014, 28: 715-724. | [7] | Feng LZ, Liu WD. Studies on the morphological differences of the adults of Chinese Culex pipiens var. pallens and Culex fatigans[J]. Acta Entomol Sin, 1954(2): 103-114, 196. (in Chinese) | | ( 冯兰洲, 刘维德. 中国尖音库蚊淡色变种与乏倦库蚊成虫在形态上的区别的研究[J]. 昆虫学报, 1954(2): 103-114, 196.) | [8] | Yan DM, Wang WZ, Wang XS, et al. Investigation of mosquitoes and mosquito-borne viruses in some regions of Guizhou Province, China, 2019[J]. Chin J Vector Biol Control, 2021, 32(4): 422-427. (in Chinese) | | ( 闫冬明, 王文周, 王雪霜, 等. 贵州省部分地区2019年蚊虫及蚊媒病毒调查研究[J]. 中国媒介生物学及控制杂志, 2021, 32(4): 422-427.) | [9] | Nan XW, Xie XX, Yu HM, et al. An investigation of the vector mosquitoes and arboviruses during a Japanese encephalitis epidemic in Baotou of Inner Mongolia Autonomous Region, China, 2018[J]. Chin J Vector Biol Control, 2020, 31(6): 652-656. (in Chinese) | | ( 南晓伟, 解新霞, 于红敏, 等. 内蒙古包头市2018年一起流行性乙型脑炎疫情的媒介蚊虫及感染虫媒病毒调查[J]. 中国媒介生物学及控制杂志, 2020, 31(6): 652-656.) | [10] | Liu LJ, Zhang BG, Cheng P, et al. Overwintering of Culex pipiens pallens (Diptera : Culicidae) in Shandong, China[J]. J Entomol Sci, 2016, 51(4): 314-320. | [11] | Wang Y, Gilbreath TM 3rd, Kukutla P, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PLoS One, 2011, 6(9): e24767. | [12] | Wang XM, Liu T, Wu Y, et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development[J]. Mol Ecol, 2018, 27(14): 2972-2985. | [13] | Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. | [14] | Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high-throughput genome editing[J]. Nat Biotechnol, 2012, 30(5): 460-465. | [15] | Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584. | [16] | Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5): 335-336. | [17] | Wang Q, Garrity GM, Tiedje JM, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007, 73(16): 5261-5267. | [18] | Yadav KK, Datta S, Naglot A, et al. Diversity of cultivable midgut microbiota at different stages of the Asian tiger mosquito, Aedes albopictus from Tezpur, India[J]. PLoS One, 2016, 11(12): e0167409. | [19] | Tandina F, Almeras L, Koné AK, et al. Use of MALDI-TOF MS and culturomics to identify mosquitoes and their midgut microbiota[J]. Parasit Vectors, 2016, 9(1): 495. | [20] | Liu XG, Yang YJ, Liao QJ, et al. Analysis of the bacterial community structure and diversity in the intestine of Cnaphalocrocis medinalis (Lepidoptera : Pyralidae)[J]. Acta Entomol Sin, 2016, 59(9): 965-976. (in Chinese) | | ( 刘小改, 杨亚军, 廖秋菊, 等. 稻纵卷叶螟肠道细菌群落结构与多样性分析[J]. 昆虫学报, 2016, 59(9): 965-976.) | [21] | Ya YK, Xia M, Li J, et al. Diversity analysis of intestinal flora in the third and fourth-instar larvae of Solenopsis invicta[J]. J Environ Entomol, 2021, 43(2): 420-429. (in Chinese) | | ( 押玉柯, 夏敏, 李军, 等. 红火蚁三龄、四龄幼虫肠道菌菌群多样性分析[J]. 环境昆虫学报, 2021, 43(2): 420-429.) | [22] | Liu J, Chen D, Zhuang GF, et al. Isolation and identification of cultivable symbiotic bacteria from the intestinal tract of Musca domestica during development[J]. Chin J Parasitol Parasit Dis, 2017, 35(2): 120-124. (in Chinese) | | ( 刘婧, 陈丹, 庄桂芬, 等. 家蝇发育过程中肠道可培养共生细菌的分离与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(2): 120-124.) | [23] | Chen HJ, Hao DJ, Wei ZQ, et al. Bacterial communities associated with the pine wilt disease insect vector Monochamus alternatus (Coleoptera : Cerambycidae) during the larvae and pupae stages[J]. Insects, 2020, 11(6): 376. | [24] | Ma SL, Yang Y, Jack CJ, et al. Effects of Tropilaelaps mercedesae on midgut bacterial diversity of Apis mellifera[J]. Exp Appl Acarol, 2019, 79(2): 169-186. | [25] | Zhang ZQ, Jiao S, Li XH, et al. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets[J]. Sci Rep, 2018, 8(1): 15634. | [26] | Vera-Ponce de León A, Jahnes BC, Duan J, et al. Cultivable, host-specific bacteroidetes symbionts exhibit diverse polysaccharolytic strategies[J]. Appl Environ Microbiol, 2020, 86(8): e00091-20. | [27] | Sibai M, Altunta ş E, Yldrm B, et al. Microbiome and longevity: high abundance of longevity-linked Muribaculaceae in the gut of the long-living rodent Spalax leucodon[J]. OMICS, 2020, 24(10): 592-601. | [28] | Dickson LB, Jiolle D, Minard G, et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector[J]. Sci Adv, 2017, 3(8): e1700585. | [29] | Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont[J]. Parasit Vectors, 2013, 6: 146. | [30] | Kittayapong P, Baisley KJ, Sharpe RG, et al. Maternal transmission efficiency of Wolbachia superinfections in Aedes albopictus populations in Thailand[J]. Am J Trop Med Hyg, 2002, 66(1): 103-107. | [31] | Wu JR, Zhang QJ, Xiao YJ. Research on Wolbachia technique for control of mosquito-borne diseases[J]. Biol Teach, 2017, 42(7): 13-14. (in Chinese) | | ( 吴姣榕, 张秋金, 肖义军. 沃尔巴克氏体技术控制蚊媒病研究概述[J]. 生物学教学, 2017, 42(7): 13-14.) | [32] | Yang C, Xi ZY, Hu ZY. Blocking transmission of mosquito-borne diseases through population suppression using Wolbachia[J]. Chin J Vector Biol Control, 2020, 31(1): 113-116. (in Chinese) | | ( 杨翠, 奚志勇, 胡志勇. 应用沃尔巴克氏体通过种群压制阻断蚊媒病传播的研究进展[J]. 中国媒介生物学及控制杂志, 2020, 31(1): 113-116.) | [33] | Pan XL, Pike A, Joshi D, et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti[J]. ISME J, 2018, 12(1): 277-288. | [34] | González-Serrano F, Pérez-Cobas AE, Rosas T, et al. The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis[J]. Microb Ecol, 2020, 79(4): 960-970. |
|