[1] | Cain DW, Cidlowski JA. Specificity and sensitivity of glucocorticoid signaling in health and disease[J]. Best Pract Res Clin Endocrinol Metab, 2015, 29(4): 545-556. | [2] | Cain DW, Cidlowski JA. Immune regulation by glucocorticoids[J]. Nat Rev Immunol, 2017, 17(4): 233-247. | [3] | Mahase E. Covid-19: low dose steroid cuts death in ventilated patients by one third, trial finds[J]. BMJ, 2020, 369: m2422. | [4] | Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives[J]. Nature, 2020, 582(7813): 469. | [5] | He X, Ashbrook AW, Du Y, et al. RTP4 inhibits IFN-I response and enhances experimental cerebral malaria and neuropathology[J]. Proc Natl Acad Sci USA, 2020, 117(32): 19465-19474. | [6] | Hai L, Shi XY, Wang Q. Attenuated T cell responses are associated with the blockade of cerebral malaria development by YOP1-deficient Plasmodium berghei ANKA[J]. Front Immunol, 2021, 12: 642585. | [7] | Wang J, Li Y, Shen Y, et al. PDL1 fusion protein protects against experimental cerebral malaria via repressing over-reactive CD8+ T cell responses[J]. Front Immunol, 2019, 9: 3157. | [8] | Van den Steen PE, Geurts N, Deroost K, et al. Immunopathology and dexamethasone therapy in a new model for malaria-associated acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2010, 181(9): 957-968. | [9] | Moreira DR, Uberti ACMG, Gomes ARQ, et al. Dexamethasone increased the survival rate in Plasmodium berghei-infected mice[J]. Sci Rep, 2021, 11: 2623. | [10] | Curfs JH, Schetters TP, Hermsen CC, et al. Immunological aspects of cerebral lesions in murine malaria[J]. Clin Exp Immunol, 1989, 75(1): 136-140. | [11] | Liu TP, Fu Y, Xu WY. Immunopathological mechanism of cerebral malaria[J]. Chin J Parasitol Parasit Dis, 2011, 29(1): 64-67. (in Chinese) | | ( 刘太平, 付雍, 徐文岳. 脑型疟发生的免疫病理机制[J]. 中国寄生虫学与寄生虫病杂志, 2011, 29(1): 64-67.) | [12] | Campanella GSV, Tager AM, El Khoury JK, et al. Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria[J]. Proc Natl Acad Sci USA, 2008, 105(12): 4814-4819. | [13] | van der Heyde HC, Nolan J, Combes V, et al. A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction[J]. Trends Parasitol, 2006, 22(11): 503-508. | [14] | Shikani HJ, Freeman BD, Lisanti MP, et al. Cerebral malaria[J]. Am J Pathol, 2012, 181(5): 1484-1492. | [15] | Burrack KS, Huggins MA, Taras E, et al. Interleukin-15 complex treatment protects mice from cerebral malaria by inducing interleukin-10-producing natural killer cells[J]. Immunity, 2018, 48(4): 760-772.e4. | [16] | Simhadri PK, Malwade R, Vanka R, et al. Dysregulation of LIMK-1/cofilin-1 pathway: a possible basis for alteration of neuronal morphology in experimental cerebral malaria[J]. Ann Neurol, 2017, 82(3): 429-443. | [17] | Howland SW, Poh CM, Gun SY, et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria[J]. EMBO Mol Med, 2013, 5(7): 984-999. | [18] | Vandermosten L, Pham TT, Knoops S, et al. Adrenal hormones mediate disease tolerance in malaria[J]. Nat Commun, 2018, 9: 4525. | [19] | Rungruang T, Klosek SK. Chronic steroid administration does not suppress Plasmodium development and maturation[J]. Parasitol Res, 2007, 101(4): 1091-1095. | [20] | Giles AJ, Hutchinson MKND, Sonnemann HM, et al. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy[J]. J Immunother Cancer, 2018, 6(1): 51. | [21] | Xia M, Gasser J, Feige U. Dexamethasone enhances CTLA-4 expression during T cell activation[J]. Cell Mol Life Sci, 1999, 55(12): 1649-1656. | [22] | Keir ME, Francisco LM, Sharpe AH. PD-1 and its ligands in T-cell immunity[J]. Curr Opin Immunol, 2007, 19(3): 309-314. | [23] | Xing KL, Gu BX, Zhang P, et al. Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: an insight into the optimum application of glucocorticoids in anti-cancer therapy[J]. BMC Immunol, 2015, 16(1): 39. | [24] | Wang J, Shen Y, Li Y, et al. Recent progress in immune checkpoint molecules in Plasmodium infection and immunity[J]. Chin J Parasitol Parasit Dis, 2019, 37(4): 472-480. (in Chinese) | | ( 王军, 沈燕, 李悦, 等. 免疫检查点分子调控在疟原虫感染与免疫中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(4): 472-480.) | [25] | Haque A, Best SE, Amante FH, et al. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo[J]. PLoS Pathog, 2010, 6(12): e1001221. | [26] | Tabardel Y, Duchateau J, Schmartz D, et al. Corticosteroids increase blood interleukin-10 levels during cardiopulmonary bypass in men[J]. Surgery, 1996, 119(1): 76-80. | [27] | Li PY, Gao HW, Dong TW, et al. Effect of different sources of IL-10 on regulating immune pathology in mice infected with cerebral malaria[J]. J Harbin Med Univ, 2015, 49(4): 296-299, 304. (in Chinese) | | ( 李培育, 高宏伟, 董天崴, 等. 不同来源的IL-10对脑疟小鼠免疫病理损伤的调控作用[J]. 哈尔滨医科大学学报, 2015, 49(4): 296-299, 304.) | [28] | Amici SA, Dong J, Guerau-de-Arellano M. Molecular mechanisms modulating the phenotype of macrophages and microglia[J]. Front Immunol, 2017, 8: 1520. | [29] | Zhang LJ, Zhang JQ, You ZL. Switching of the microglial activation phenotype is a possible treatment for depression disorder[J]. Front Cell Neurosci, 2018, 12: 306. | [30] | Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm[J]. Nat Immunol, 2010, 11(10): 889-896. | [31] | Besnard AG, Guabiraba R, Niedbala W, et al. IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells[J]. PLoS Pathog, 2015, 11(2): e1004607. |
|