中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (2): 265-270.doi: 10.12140/j.issn.1000-7423.2021.02.021
收稿日期:
2020-08-18
修回日期:
2021-01-15
出版日期:
2021-04-30
发布日期:
2021-04-30
通讯作者:
曹俊
作者简介:
刘宏(1995-),女,硕士研究生,从事疟疾分子流行病学研究。E-mail: 1663082396@qq.com
基金资助:
LIU Hong1,2(), LIU Yao-bao2, CAO Jun1,2,*(
)
Received:
2020-08-18
Revised:
2021-01-15
Online:
2021-04-30
Published:
2021-04-30
Contact:
CAO Jun
Supported by:
摘要:
疟疾是由疟原虫感染引起的一种传染病,是全球最重要的公共卫生问题之一。随着人体疟原虫全基因组测序的完成和测序技术的发展,全基因组测序在疟原虫遗传进化、流行特征、抗药性监测、基因溯源等方面的应用越来越广泛,本文将全基因组测序技术在疟原虫中的研究和应用进展进行综述。
中图分类号:
刘宏, 刘耀宝, 曹俊. 疟原虫全基因组测序研究进展及其应用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2): 265-270.
LIU Hong, LIU Yao-bao, CAO Jun. Research advance and application of whole-genome sequencing of Plasmodium[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(2): 265-270.
表1
人体疟原虫基因组特征
疟原虫种 | 基因组大小/Mb | 染色体数量 | AT含量/% | Scaffolds数 | 基因总数[ | 蛋白质编码基因数[ |
---|---|---|---|---|---|---|
恶性疟原虫[ | 23.3 | 14 | 80.7 | 14 | 5 712 | 5 460 |
间日疟原虫[ | 29.1 | 14 | 60.3 | 374 | 6 830 | 6 677 |
三日疟原虫[ | 33.6 | 14 | 75.3 | 63 | 6 709 | 6 573 |
卵形疟原虫柯氏亚种[ | 33.5 | 14 | 71.6 | 4 025 | 7 280 | 7 162 |
卵形疟原虫沃氏亚种[ | 33.5 | 14 | 71.1 | 1 914 | 8 582 | 8 421 |
诺氏疟原虫[ | 24.4 | 14 | 61.3 | 28 | 5 483 | 5 323 |
[1] | Zhang L, Feng J, Xia ZG, et al. Analysis of epidemic characteristics and elimination of malaria in China in 2019[J]. Chin J Parasitol Parasit Dis, 2020,38(2):133-138. (in Chinese) |
( 张丽, 丰俊, 夏志贵, 等. 2019年全国疟疾疫情特征分析及消除工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(2):133-138.) | |
[2] | Xu QL, Zhou HR, Qian MB, et al. Research progress on economic burden of malaria[J]. Chin J Parasitol Parasit Dis, 2020,38(6):749-752. (in Chinese) |
( 许秋利, 周鸿让, 钱门宝, 等. 疟疾经济负担研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(6):749-752.) | |
[3] | World Health Organization. World malaria report 2019[R]. Geneva: World Health Organization, 2019. |
[4] | Li SH, Li J, Gao LJ, et al. Application of fluorescence quantitative PCR in laboratory diagnosis of malaria[J]. Chin J Parasitol Parasit Dis, 2019,37(2):232-234. (in Chinese) |
( 李素华, 李静, 高丽君, 等. 荧光定量PCR在疟疾实验室诊断中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):232-234.) | |
[5] | Li M, Xia ZG, Tang LH. Establishment and application of multiplex PCR system for detection of 4 species of human Plasmodium[J]. Chin J Parasitol Parasit Dis, 2015,33(2):91-95. (in Chinese) |
( 李美, 夏志贵, 汤林华. 检测4种人体疟原虫多重PCR体系的建立和应用[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(2):91-95.) | |
[6] |
Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum[J]. Nature, 2002,419(6906):498-511.
doi: 10.1038/nature01097 |
[7] |
Carlton JM, Adams JH, Silva JC, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax[J]. Nature, 2008,455(7214):757-763.
doi: 10.1038/nature07327 pmid: 18843361 |
[8] |
Pain A, Böhme U, Berry AE, et al. The genome of the simian and human malaria parasite Plasmodium knowlesi[J]. Nature, 2008,455(7214):799-803.
doi: 10.1038/nature07306 pmid: 18843368 |
[9] |
Rutledge GG, Böhme U, Sanders M, et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution[J]. Nature, 2017,542(7639):101-104.
doi: 10.1038/nature21038 pmid: 28117441 |
[10] |
Ansari HR, Templeton TJ, Subudhi AK, et al. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species[J]. Int J Parasitol, 2016,46(11):685-696.
doi: 10.1016/j.ijpara.2016.05.009 |
[11] | PlasmoDB: a functional genomic database formalaria parasites.[EB/OL]. (2008-10-31). [2020-03-08]. https://plasmodb.org. |
[12] |
Volkman SK, Sabeti PC DeCaprio D, et al. A genome-wide map of diversity in Plasmodium falciparum[J]. Nat Genet, 2007,39(1):113-119.
pmid: 17159979 |
[13] | Su XZ, Lane KD, Xia L, et al. Plasmodium genomics and genetics: new insights into malaria pathogenesis, drug resistance, epidemiology, and evolution[J]. Clin Microbiol Rev, 2019,32(4):e00019-19. |
[14] |
Aurrecoechea C, Brestelli J, Brunk BP, et al. PlasmoDB: a functional genomic database for malaria parasites[J]. Nucl Acid Res, 2009,37(suppl 1):D539-D543.
doi: 10.1093/nar/gkn814 |
[15] |
Network TMGE. A global network for investigating the genomic epidemiology of malaria[J]. Nature, 2008,456(7223):732-737.
doi: 10.1038/nature07632 |
[16] |
Neafsey DE, Galinsky K, Jiang RHY, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum[J]. Nat Genet, 2012,44(9):1046-1050.
doi: 10.1038/ng.2373 |
[17] |
Liu W, Sundararaman SA, Loy DE, et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas[J]. Genome Biol Evol, 2016,8(6):1929-1939.
doi: 10.1093/gbe/evw128 |
[18] |
Liu W, Li Y, Learn GH, et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas[J]. Nature, 2010,467(7314):420-425.
doi: 10.1038/nature09442 |
[19] |
Otto TD, Gilabert A, Crellen T, et al. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria[J]. Nat Microbiol, 2018,3(6):687-697.
doi: 10.1038/s41564-018-0162-2 |
[20] |
Liu W, Li Y, Shaw KS, et al. African origin of the malaria parasite Plasmodium vivax[J]. Nat Commun, 2014,5:3346.
doi: 10.1038/ncomms4346 |
[21] |
McManus KF, Taravella AM, Henn BM, et al. Population genetic analysis of the DARC locus (Duffy) reveals adaptation from standing variation associated with malaria resistance in humans[J]. PLoS Genet, 2017,13(3):e1006560.
doi: 10.1371/journal.pgen.1006560 |
[22] |
Culleton R, Carter R. African Plasmodium vivax: distribution and origins[J]. Int J Parasitol, 2012,42(12):1091-1097.
doi: 10.1016/j.ijpara.2012.08.005 |
[23] |
Gilabert A, Otto TD, Rutledge GG, et al. Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution[J]. PLoS Biol, 2018,16(8):e2006035.
doi: 10.1371/journal.pbio.2006035 |
[24] |
Arisue N, Hashimoto T, Kawai S, et al. Apicoplast phylogeny reveals the position of Plasmodium vivax basal to the Asian primate malaria parasite clade[J]. Sci Rep, 2019,9(1):7274.
doi: 10.1038/s41598-019-43831-1 |
[25] |
de Oliveira TC, Rodrigues PT, Menezes MJ, et al. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax[J]. PLoS Neglected Trop Dis, 2017,11(7):e0005824.
doi: 10.1371/journal.pntd.0005824 |
[26] |
Pearson RD, Amato R, Auburn S, et al. Genomic analysis of local variation and recent evolution in Plasmodium vivax[J]. Nat Genet, 2016,48(8):959-964.
doi: 10.1038/ng.3599 |
[27] |
Arisue N, Hashimoto T, Mitsui H, et al. The Plasmodium apicoplast genome: conserved structure and close relationship of P. ovale to rodent malaria parasites[J]. Mol Biol Evol, 2012,29(9):2095-2099.
doi: 10.1093/molbev/mss082 |
[28] |
Roh ME, Tessema SK, Murphy M, et al. High genetic diversity of Plasmodium falciparum in the low-transmission setting of the kingdom of eswatini[J]. J Infect Dis, 2019,220(8):1346-1354.
doi: 10.1093/infdis/jiz305 |
[29] | Chen XD, Ye R, Pan WQ. Study on flanking microsatellite polymorphism of Plasmodium falciparum K13 gene in China-Myanmar border and southeastern Thailand[J]. Chin J Parasitol Parasit Dis, 2017,35(3):209-212. (in Chinese) |
( 陈学迪, 叶润, 潘卫庆. 中缅边境及泰国东南地区恶性疟原虫K13基因侧翼微卫星多态性研究[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(3):209-212.) | |
[30] |
Pringle JC, Tessema S, Wesolowski A, et al. Genetic evidence of focal Plasmodium falciparum transmission in a pre-elimination setting in southern Province, Zambia[J]. J Infect Dis, 2019,219(8):1254-1263.
doi: 10.1093/infdis/jiy640 pmid: 30445612 |
[31] |
Manske M, Miotto O, Campino S, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[J]. Nature, 2012,487(7407):375-379.
doi: 10.1038/nature11174 |
[32] |
Amambua-Ngwa A, Amenga-Etego L, Kamau E, et al. Major subpopulations of Plasmodium falciparum in sub-Saharan Africa[J]. Science, 2019,365(6455):813-816.
doi: 10.1126/science.aav5427 |
[33] |
Shetty AC, Jacob CG, Huang F, et al. Genomic structure and diversity of Plasmodium falciparum in Southeast Asia reveal recent parasite migration patterns[J]. Nat Commun, 2019,10(1):2665.
doi: 10.1038/s41467-019-10121-3 pmid: 31209259 |
[34] |
Amambua-Ngwa A, Jeffries D, Amato R, et al. Consistent signatures of selection from genomic analysis of pairs of temporal and spatial Plasmodium falciparum populations from the Gambia[J]. Sci Rep, 2018,8:9687.
doi: 10.1038/s41598-018-28017-5 |
[35] |
Duffy CW, Ba H, Assefa S, et al. Population genetic structure and adaptation of malaria parasites on the edge of endemic distribution[J]. Mol Ecol, 2017,26(11):2880-2894.
doi: 10.1111/mec.2017.26.issue-11 |
[36] |
Hupalo DN, Luo ZP, Melnikov A, et al. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax[J]. Nat Genet, 2016,48(8):953-958.
doi: 10.1038/ng.3588 |
[37] |
Noviyanti R, Coutrier F, Utami RA, et al. Contrasting transmission dynamics of co-endemic Plasmodium vivax and P. falciparum: implications for malaria control and elimination[J]. PLoS Negl Trop Dis, 2015,9(5):e0003739.
doi: 10.1371/journal.pntd.0003739 |
[38] |
Chen SB, Wang Y, Kassegne K, et al. Whole-genome sequencing of a Plasmodium vivax clinical isolate exhibits geographical characteristics and high genetic variation in China-Myanmar border area[J]. BMC Genom, 2017,18(1):131.
doi: 10.1186/s12864-017-3523-y |
[39] |
Auburn S, Getachew S, Pearson RD, et al. Genomic analysis of Plasmodium vivax in southern Ethiopia reveals selective pressures in multiple parasite mechanisms[J]. J Infect Dis, 2019,220(11):1738-1749.
doi: 10.1093/infdis/jiz016 pmid: 30668735 |
[40] |
Tessema SK, Raman J, Duffy CW, et al. Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa[J]. Malar J, 2019,18:268.
doi: 10.1186/s12936-019-2880-1 |
[41] |
Lu F, Culleton R, Zhang M, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa[J]. N Engl J Med, 2017,376(10):991-993.
doi: 10.1056/NEJMc1612765 |
[42] |
Daniels R, Volkman SK, Milner DA, et al. A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking[J]. Malar J, 2008,7:223.
doi: 10.1186/1475-2875-7-223 |
[43] |
Preston MD, Campino S, Assefa SA, et al. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains[J]. Nat Commun, 2014,5:4052.
doi: 10.1038/ncomms5052 pmid: 24923250 |
[44] |
Baniecki ML, Faust AL, Schaffner SF, et al. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections[J]. PLoS Negl Trop Dis, 2015,9(3):e0003539.
doi: 10.1371/journal.pntd.0003539 |
[45] |
Rodrigues PT, Alves JM, Santamaria AM, et al. Using mitochondrial genome sequences to track the origin of imported Plasmodium vivax infections diagnosed in the United States[J]. Am J Trop Med Hyg, 2014,90(6):1102-1108.
doi: 10.4269/ajtmh.13-0588 |
[46] |
Diez Benavente E, Campos M, Phelan J, et al. A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria[J]. PLoS Genet, 2020,16(2):e1008576.
doi: 10.1371/journal.pgen.1008576 |
[47] | Popovici J, Friedrich LR, Kim S, et al. Genomic analyses reveal the common occurrence and complexity of Plasmodium vivax relapses in Cambodia[J]. mBio, 2018,9(1):e01888-17. |
[48] |
Cowell AN, Valdivia HO, Bishop DK, et al. Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing[J]. Genome Med, 2018,10(1):52.
doi: 10.1186/s13073-018-0563-0 pmid: 29973248 |
[49] |
Gorobets NY, Sedash YV, Singh BK, et al. An overview of currently available antimalarials[J]. Curr Top Med Chem, 2017,17(19):2143-2157.
doi: 10.2174/1568026617666170130123520 pmid: 28137228 |
[50] |
Thriemer K, Ley B, Bobogare A, et al. Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group[J]. Malar J, 2017,16:141.
doi: 10.1186/s12936-017-1784-1 |
[51] |
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic[J]. Nat Med, 2017,23(8):917-928.
doi: 10.1038/nm.4381 |
[52] |
Amaratunga C, Lim P, Suon S, et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study[J]. Lancet Infect Dis, 2016,16(3):357-365.
doi: 10.1016/S1473-3099(15)00487-9 pmid: 26774243 |
[53] |
Mita T, Tanabe K, Kita K. Spread and evolution of Plasmodium falciparum drug resistance[J]. Parasitol Int, 2009,58(3):201-209.
doi: 10.1016/j.parint.2009.04.004 |
[54] |
Park DJ, Lukens AK, Neafsey DE, et al. Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite[J]. Proc Natl Acad Sci USA, 2012,109(32):13052-13057.
doi: 10.1073/pnas.1210585109 |
[55] |
Cheeseman IH, Miller BA, Nair S, et al. A major genome region underlying artemisinin resistance in malaria[J]. Science, 2012,336(6077):79-82.
doi: 10.1126/science.1215966 |
[56] |
Takala-Harrison S, Clark TG, Jacob CG, et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia[J]. Proc Natl Acad Sci USA, 2013,110(1):240-245.
doi: 10.1073/pnas.1211205110 |
[57] |
Miotto O, Almagro-Garcia J, Manske M, et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia[J]. Nat Genet, 2013,45(6):648-655.
doi: 10.1038/ng.2624 |
[58] |
Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014,505(7481):50-55.
doi: 10.1038/nature12876 |
[59] |
Ménard D, Khim N, Beghain J, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms[J]. N Engl J Med, 2016,374(25):2453-2464.
doi: 10.1056/NEJMoa1513137 |
[60] |
Hamilton WL Amato R van der Pluijm RW, et al. Evolution and expansion of multidrug-resistant malaria in Southeast Asia: a genomic epidemiology study[J]. Lancet Infect Dis, 2019,19(9):943-951.
doi: S1473-3099(19)30392-5 pmid: 31345709 |
[61] |
van der Pluijm RW, Imwong M, Chau NH, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study[J]. Lancet Infect Dis, 2019,19(9):952-961.
doi: S1473-3099(19)30391-3 pmid: 31345710 |
[62] |
Cowell AN, Istvan ES, Lukens AK, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics[J]. Science, 2018,359(6372):191-199.
doi: 10.1126/science.aan4472 |
[63] |
Winter DJ, Pacheco MA, Vallejo AF, et al. Whole genome sequencing of field isolates reveals extensive genetic diversity in Plasmodium vivax from Colombia[J]. PLoS Negl Trop Dis, 2015,9(12):e0004252.
doi: 10.1371/journal.pntd.0004252 |
[64] |
Shen HM, Chen SB, Wang Y, et al. Genome-wide scans for the identification of Plasmodium vivax genes under positive selection[J]. Malar J, 2017,16:238.
doi: 10.1186/s12936-017-1882-0 |
[65] |
Auburn S, Marfurt J, Maslen G, et al. Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing[J]. PLoS One, 2013,8(1):e53160.
doi: 10.1371/journal.pone.0053160 |
[66] |
Zhong D, Koepfli C, Cui L, et al. Molecular approaches to determine the multiplicity of Plasmodium infections[J]. Malar J, 2018,17:172.
doi: 10.1186/s12936-018-2322-5 |
[1] | 郭帅, 何彪, 高源利, 范永铃, 朱锋, 丁艳, 刘太平, 徐文岳. 鼠疟原虫感染大鼠和小鼠的种特异性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 539-545. |
[2] | 龚艳凤, 李紫芬, 唐乖, 黄美琴, 周炳华, 胡强. 2015—2022年江西省疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 586-592. |
[3] | 周瑞敏, 纪鹏慧, 李素华, 杨成运, 刘颖, 钱丹, 邓艳, 鲁德领, 赵玉玲, 赵东阳, 张红卫. 河南省自赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 593-600. |
[4] | 梁柯嘉, 刘聪, 李彦霖, 李小鸽, 刘彦, 李贞魁. 疟原虫有性阶段转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 619-624. |
[5] | 丁红芸, 董莹, 徐艳春, 邓艳, 刘言, 吴静, 陈梦妮, 张苍林. 云南省输入性间日疟原虫多药抗性蛋白1基因突变多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 404-411. |
[6] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[7] | 耿燕, 兰子尧, 李杨, 戴佳芮, 蔡姗, 卢丽丹, 黄雨婷, 师伟芳, 佘丹娅. 2017—2021年贵州省疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 384-388. |
[8] | 张丽, 易博禹, 尹建海, 夏志贵. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 137-141. |
[9] | 陈朱云, 欧阳榕, 肖丽贞, 林耀莹, 谢汉国, 张山鹰. 福建省疟疾消除后基层监测响应系统现况分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 170-175. |
[10] | 孙军. 疟原虫色素形成的生物学意义[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 209-212. |
[11] | 陈志辉, 洪劲, 张荣兵, 杨倩, 叶青, 李建荣, 田荣. 2006—2021年昆明市疟疾流行特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 233-237. |
[12] | 刘建成, 许艳, 王龙江, 孔祥礼, 王用斌, 李曰进. 2015—2021年山东省临沂市输入性疟疾疫情监测分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 249-252. |
[13] | 李美, 肖宁, 夏志贵. 基于无性期18S rDNA特异性引物检测5种疟原虫qPCR的建立和应用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 36-43. |
[14] | 张耀光, 江莉, 王真瑜, 朱民, 朱倩, 马晓疆, 余晴, 陈健. 2020—2021年上海市7例输入性疟疾病例误判原因分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 68-74. |
[15] | 李素华, 纪鹏慧, 周瑞敏, 贺志权, 钱丹, 杨成运, 刘颖, 鲁德领, 王昊, 张红卫, 赵玉玲. 2015—2019年河南省不同诊断机构疟原虫检测能力评价[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 748-753. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||