[1] | Zhang L, Feng J, Xia ZG, et al. Analysis of epidemic characteristics and elimination of malaria in China in 2019[J]. Chin J Parasitol Parasit Dis, 2020,38(2):133-138. (in Chinese) | [1] | ( 张丽, 丰俊, 夏志贵, 等. 2019年全国疟疾疫情特征分析及消除工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(2):133-138.) | [2] | Xu QL, Zhou HR, Qian MB, et al. Research progress on economic burden of malaria[J]. Chin J Parasitol Parasit Dis, 2020,38(6):749-752. (in Chinese) | [2] | ( 许秋利, 周鸿让, 钱门宝, 等. 疟疾经济负担研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(6):749-752.) | [3] | World Health Organization. World malaria report 2019[R]. Geneva: World Health Organization, 2019. | [4] | Li SH, Li J, Gao LJ, et al. Application of fluorescence quantitative PCR in laboratory diagnosis of malaria[J]. Chin J Parasitol Parasit Dis, 2019,37(2):232-234. (in Chinese) | [4] | ( 李素华, 李静, 高丽君, 等. 荧光定量PCR在疟疾实验室诊断中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):232-234.) | [5] | Li M, Xia ZG, Tang LH. Establishment and application of multiplex PCR system for detection of 4 species of human Plasmodium[J]. Chin J Parasitol Parasit Dis, 2015,33(2):91-95. (in Chinese) | [5] | ( 李美, 夏志贵, 汤林华. 检测4种人体疟原虫多重PCR体系的建立和应用[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(2):91-95.) | [6] | Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum[J]. Nature, 2002,419(6906):498-511. | [7] | Carlton JM, Adams JH, Silva JC, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax[J]. Nature, 2008,455(7214):757-763. | [8] | Pain A, B?hme U, Berry AE, et al. The genome of the simian and human malaria parasite Plasmodium knowlesi[J]. Nature, 2008,455(7214):799-803. | [9] | Rutledge GG, B?hme U, Sanders M, et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution[J]. Nature, 2017,542(7639):101-104. | [10] | Ansari HR, Templeton TJ, Subudhi AK, et al. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species[J]. Int J Parasitol, 2016,46(11):685-696. | [11] | PlasmoDB: a functional genomic database formalaria parasites.[EB/OL]. (2008-10-31). [2020-03-08]. https://plasmodb.org. | [12] | Volkman SK, Sabeti PC DeCaprio D, et al. A genome-wide map of diversity in Plasmodium falciparum[J]. Nat Genet, 2007,39(1):113-119. | [13] | Su XZ, Lane KD, Xia L, et al. Plasmodium genomics and genetics: new insights into malaria pathogenesis, drug resistance, epidemiology, and evolution[J]. Clin Microbiol Rev, 2019,32(4):e00019-19. | [14] | Aurrecoechea C, Brestelli J, Brunk BP, et al. PlasmoDB: a functional genomic database for malaria parasites[J]. Nucl Acid Res, 2009,37(suppl 1):D539-D543. | [15] | Network TMGE. A global network for investigating the genomic epidemiology of malaria[J]. Nature, 2008,456(7223):732-737. | [16] | Neafsey DE, Galinsky K, Jiang RHY, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum[J]. Nat Genet, 2012,44(9):1046-1050. | [17] | Liu W, Sundararaman SA, Loy DE, et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas[J]. Genome Biol Evol, 2016,8(6):1929-1939. | [18] | Liu W, Li Y, Learn GH, et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas[J]. Nature, 2010,467(7314):420-425. | [19] | Otto TD, Gilabert A, Crellen T, et al. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria[J]. Nat Microbiol, 2018,3(6):687-697. | [20] | Liu W, Li Y, Shaw KS, et al. African origin of the malaria parasite Plasmodium vivax[J]. Nat Commun, 2014,5:3346. | [21] | McManus KF, Taravella AM, Henn BM, et al. Population genetic analysis of the DARC locus (Duffy) reveals adaptation from standing variation associated with malaria resistance in humans[J]. PLoS Genet, 2017,13(3):e1006560. | [22] | Culleton R, Carter R. African Plasmodium vivax: distribution and origins[J]. Int J Parasitol, 2012,42(12):1091-1097. | [23] | Gilabert A, Otto TD, Rutledge GG, et al. Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution[J]. PLoS Biol, 2018,16(8):e2006035. | [24] | Arisue N, Hashimoto T, Kawai S, et al. Apicoplast phylogeny reveals the position of Plasmodium vivax basal to the Asian primate malaria parasite clade[J]. Sci Rep, 2019,9(1):7274. | [25] | de Oliveira TC, Rodrigues PT, Menezes MJ, et al. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax[J]. PLoS Neglected Trop Dis, 2017,11(7):e0005824. | [26] | Pearson RD, Amato R, Auburn S, et al. Genomic analysis of local variation and recent evolution in Plasmodium vivax[J]. Nat Genet, 2016,48(8):959-964. | [27] | Arisue N, Hashimoto T, Mitsui H, et al. The Plasmodium apicoplast genome: conserved structure and close relationship of P. ovale to rodent malaria parasites[J]. Mol Biol Evol, 2012,29(9):2095-2099. | [28] | Roh ME, Tessema SK, Murphy M, et al. High genetic diversity of Plasmodium falciparum in the low-transmission setting of the kingdom of eswatini[J]. J Infect Dis, 2019,220(8):1346-1354. | [29] | Chen XD, Ye R, Pan WQ. Study on flanking microsatellite polymorphism of Plasmodium falciparum K13 gene in China-Myanmar border and southeastern Thailand[J]. Chin J Parasitol Parasit Dis, 2017,35(3):209-212. (in Chinese) | [29] | ( 陈学迪, 叶润, 潘卫庆. 中缅边境及泰国东南地区恶性疟原虫K13基因侧翼微卫星多态性研究[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(3):209-212.) | [30] | Pringle JC, Tessema S, Wesolowski A, et al. Genetic evidence of focal Plasmodium falciparum transmission in a pre-elimination setting in southern Province, Zambia[J]. J Infect Dis, 2019,219(8):1254-1263. | [31] | Manske M, Miotto O, Campino S, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[J]. Nature, 2012,487(7407):375-379. | [32] | Amambua-Ngwa A, Amenga-Etego L, Kamau E, et al. Major subpopulations of Plasmodium falciparum in sub-Saharan Africa[J]. Science, 2019,365(6455):813-816. | [33] | Shetty AC, Jacob CG, Huang F, et al. Genomic structure and diversity of Plasmodium falciparum in Southeast Asia reveal recent parasite migration patterns[J]. Nat Commun, 2019,10(1):2665. | [34] | Amambua-Ngwa A, Jeffries D, Amato R, et al. Consistent signatures of selection from genomic analysis of pairs of temporal and spatial Plasmodium falciparum populations from the Gambia[J]. Sci Rep, 2018,8:9687. | [35] | Duffy CW, Ba H, Assefa S, et al. Population genetic structure and adaptation of malaria parasites on the edge of endemic distribution[J]. Mol Ecol, 2017,26(11):2880-2894. | [36] | Hupalo DN, Luo ZP, Melnikov A, et al. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax[J]. Nat Genet, 2016,48(8):953-958. | [37] | Noviyanti R, Coutrier F, Utami RA, et al. Contrasting transmission dynamics of co-endemic Plasmodium vivax and P. falciparum: implications for malaria control and elimination[J]. PLoS Negl Trop Dis, 2015,9(5):e0003739. | [38] | Chen SB, Wang Y, Kassegne K, et al. Whole-genome sequencing of a Plasmodium vivax clinical isolate exhibits geographical characteristics and high genetic variation in China-Myanmar border area[J]. BMC Genom, 2017,18(1):131. | [39] | Auburn S, Getachew S, Pearson RD, et al. Genomic analysis of Plasmodium vivax in southern Ethiopia reveals selective pressures in multiple parasite mechanisms[J]. J Infect Dis, 2019,220(11):1738-1749. | [40] | Tessema SK, Raman J, Duffy CW, et al. Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa[J]. Malar J, 2019,18:268. | [41] | Lu F, Culleton R, Zhang M, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa[J]. N Engl J Med, 2017,376(10):991-993. | [42] | Daniels R, Volkman SK, Milner DA, et al. A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking[J]. Malar J, 2008,7:223. | [43] | Preston MD, Campino S, Assefa SA, et al. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains[J]. Nat Commun, 2014,5:4052. | [44] | Baniecki ML, Faust AL, Schaffner SF, et al. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections[J]. PLoS Negl Trop Dis, 2015,9(3):e0003539. | [45] | Rodrigues PT, Alves JM, Santamaria AM, et al. Using mitochondrial genome sequences to track the origin of imported Plasmodium vivax infections diagnosed in the United States[J]. Am J Trop Med Hyg, 2014,90(6):1102-1108. | [46] | Diez Benavente E, Campos M, Phelan J, et al. A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria[J]. PLoS Genet, 2020,16(2):e1008576. | [47] | Popovici J, Friedrich LR, Kim S, et al. Genomic analyses reveal the common occurrence and complexity of Plasmodium vivax relapses in Cambodia[J]. mBio, 2018,9(1):e01888-17. | [48] | Cowell AN, Valdivia HO, Bishop DK, et al. Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing[J]. Genome Med, 2018,10(1):52. | [49] | Gorobets NY, Sedash YV, Singh BK, et al. An overview of currently available antimalarials[J]. Curr Top Med Chem, 2017,17(19):2143-2157. | [50] | Thriemer K, Ley B, Bobogare A, et al. Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group[J]. Malar J, 2017,16:141. | [51] | Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic[J]. Nat Med, 2017,23(8):917-928. | [52] | Amaratunga C, Lim P, Suon S, et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study[J]. Lancet Infect Dis, 2016,16(3):357-365. | [53] | Mita T, Tanabe K, Kita K. Spread and evolution of Plasmodium falciparum drug resistance[J]. Parasitol Int, 2009,58(3):201-209. | [54] | Park DJ, Lukens AK, Neafsey DE, et al. Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite[J]. Proc Natl Acad Sci USA, 2012,109(32):13052-13057. | [55] | Cheeseman IH, Miller BA, Nair S, et al. A major genome region underlying artemisinin resistance in malaria[J]. Science, 2012,336(6077):79-82. | [56] | Takala-Harrison S, Clark TG, Jacob CG, et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia[J]. Proc Natl Acad Sci USA, 2013,110(1):240-245. | [57] | Miotto O, Almagro-Garcia J, Manske M, et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia[J]. Nat Genet, 2013,45(6):648-655. | [58] | Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014,505(7481):50-55. | [59] | Ménard D, Khim N, Beghain J, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms[J]. N Engl J Med, 2016,374(25):2453-2464. | [60] | Hamilton WL Amato R van der Pluijm RW, et al. Evolution and expansion of multidrug-resistant malaria in Southeast Asia: a genomic epidemiology study[J]. Lancet Infect Dis, 2019,19(9):943-951. | [61] | van der Pluijm RW, Imwong M, Chau NH, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study[J]. Lancet Infect Dis, 2019,19(9):952-961. | [62] | Cowell AN, Istvan ES, Lukens AK, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics[J]. Science, 2018,359(6372):191-199. | [63] | Winter DJ, Pacheco MA, Vallejo AF, et al. Whole genome sequencing of field isolates reveals extensive genetic diversity in Plasmodium vivax from Colombia[J]. PLoS Negl Trop Dis, 2015,9(12):e0004252. | [64] | Shen HM, Chen SB, Wang Y, et al. Genome-wide scans for the identification of Plasmodium vivax genes under positive selection[J]. Malar J, 2017,16:238. | [65] | Auburn S, Marfurt J, Maslen G, et al. Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing[J]. PLoS One, 2013,8(1):e53160. | [66] | Zhong D, Koepfli C, Cui L, et al. Molecular approaches to determine the multiplicity of Plasmodium infections[J]. Malar J, 2018,17:172. |
|