[1] Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2). [2] Han J, Bao GS, Zhang DQ, et al. A newly discovered epidemic area of Echinococcus multilocularis in west Gansu Province in China[J]. PLoS One, 2015, 10(7): e0132731. [3] Aji T, Dong JH, Shao YM, et al. Ex vivo liver resection and autotransplantation as alternative to allotransplantation for end-stage hepatic alveolar echinococcosis[J]. J Hepatol, 2018, 69(5): 1037-1046. [4] Liu HD, Wang HB, Fan HN, et al. Alveolar echinococcosis and immune evasion[J]. Chin J Parasitol Parasit Dis, 2018, 36(6): 655-660. (in Chinese) (刘寒冬, 王宏宾, 樊海宁, 等. 多房棘球蚴病的免疫逃避机制[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 655-660.) [5] Zhang CS, Shao YM, Yang ST, et al. T-cell tolerance and exhaustion in the clearance of Echinococcus multilocularis: role of inoculum size in a quantitative hepatic experimental model[J]. Sci Rep, 2019, 9: 3424. [6] Wang XL, Hu Y, Xu YX, et al. Dynamic changes of lymphocyte differentiation and programmed cell death protein ligand 1 expression in mice infected with Schistosoma japonicum[J]. Chin J Parasitol Parasit Dis, 2018, 36(6): 579-585. (in Chinese) (王晓玲, 胡媛, 徐馀信, 等. 日本血吸虫感染小鼠肝脏和脾脏淋巴细胞及其表面程序性死亡配体1表达动态变化的研究[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 579-585.) [7] Vuitton DA, Gottstein B.Echinococcus multilocularis and its intermediate host: a model of parasite-host interplay[J]. J Biomed Biotechnol, 2010, 2010: 1-4. [8] Wang J, Gottstein B.Immunoregulation in larval Echinococcus multilocularis infection[J]. Parasite Immunol, 2016, 38(3): 182-192. [9] Mejri N, Gottstein B.Echinococcus multilocularis metacestode metabolites contain a cysteine protease that digests eotaxin, a CC pro-inflammatory chemokine[J]. Parasitol Res, 2009, 105(5): 1253-1260. [10] La X, Zhang F, Li Y, et al. Upregulation of PD-1 on CD4+CD25+ T cells is associated with immunosuppression in liver of mice infected with Echinococcus multilocularis[J]. Int Immunopharmacol, 2015, 26(2): 357-366. [11] Wei XL, Xu Q, Rexiti FL, et al. Dynamic changes of DC and T cell subsets in mice during Echinococcus multilocularis infection[J]. Cent Eur J Immunol, 2014, 39(1): 19-24. [12] Wu B, Lv FL.Progress of CD8+ T cell-mediated immune response to Toxoplasma gondii infection[J]. Chin J Parasitol Parasit Dis, 2014, 32(2): 143-147. (in Chinese) (吴斌, 吕芳丽. CD8+T细胞免疫应答在刚地弓形虫感染免疫中的功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(2): 143-147.) [13] Sun Y, Zheng KY, He X, et al. The phenotype changes of kupffer cells in the progression of hepatic schistosomiasis japonica[J]. Chin J Parasitol Parasit Dis, 2017, 35(3): 224-229. (in Chinese) (孙悦, 郑葵阳, 何兴, 等. 库普弗细胞在小鼠日本血吸虫肝病发展过程中的表型变化[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(3): 224-229.) [14] Zhang W, Li J, McManus DP. Concepts in immunology and diagnosis of hydatid disease[J]. Clin Microbiol Rev, 2003, 16(1): 18-36. [15] Zhang C, Lin R, Li Z, et al. Immune exhaustion of T cells in alveolar echinococcosis patients and its reversal by blocking checkpoint receptor TIGIT in a murine model[J]. Hepatology, 2019, DOI:10.1002/hep.30896. [16] Abulizi A, Shao Y, Aji T, et al. Echinococcus multilocularis inoculation induces NK cell functional decrease through high expression of NKG2A in C57BL/6 mice[J]. BMC Infect Dis, 2019, 19(1): 792. [17] Lan B, Zhang J, Lu D, et al. Generation of cancer-specific CD8+CD69+ cells inhibits colon cancer growth[J]. Immunobiology, 2016, 221(1): 1-5. [18] Kim MV, Ouyang W, Liao W, et al. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection[J]. Immunity, 2013, 39(2): 286-297. [19] Samji T, Khanna KM.Understanding memory CD8+ T cells[J]. Immunol Lett, 2017, 185: 32-39. [20] Zheng L, Hu Y, Wang YJ, et al. Effects of common stimulants on intracellular cytokines and CD62L of splenic CD8+ T cells from mice infected with Schistosoma japonicum[J]. Chin J Parasitol Parasit Dis, 2017, 35(3): 218-223. (in Chinese) (郑力, 胡媛, 王燕娟, 等. 四种刺激剂对日本血吸虫感染小鼠脾脏CD8+ T细胞内细胞因子及表面分子CD62L的影响[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(3): 218-223.) |