[1] | Bouzid M, Hunter PR, Chalmers RM, et al. Cryptosporidium pathogenicity and virulence[J]. Clin Microbiol Rev, 2013, 26(1): 115-134. | [2] | Guo YQ, Ryan U, Feng YY, et al. Emergence of zoonotic Cryptosporidium parvum in China[J]. Trends Parasitol, 2022, 38(4): 335-343. | [3] | Chalmers RM, Davies AP, Tyler K. Cryptosporidium[J]. Microbiology, 2019, 165(5): 500-502. | [4] | GBD Diarrhoeal Diseases Collaborators. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: A systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet Infect Dis, 2017, 17(9): 909-948. | [5] | Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study[J]. Lancet, 2013, 382(9888): 209-222. | [6] | Khalil IA, Troeger C, Rao PC, et al. Morbidity, mortality, and long-term consequences associated with diarrhoea from Cryptosporidium infection in children younger than 5 years: A meta-analyses study[J]. Lancet Glob Health, 2018, 6(7): e758-e768. | [7] | Wang X, Jiang YY, Wu WP, et al. Cryptosporidiosis threat under climate change in China: Prediction and validation of habitat suitability and outbreak risk for human-derived Cryptosporidium based on ecological niche models[J]. Infect Dis Poverty, 2023, 12(1): 35. | [8] | Tandel J, English ED, Sateriale A, et al. Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum[J]. Nat Microbiol, 2019, 4(12): 2226-2236. | [9] | Yang ZT, Fu YH, Gong PT, et al. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells[J]. Microb Pathog, 2015, 85: 29-34. | [10] | Zhang GL, Zhang YJ, Niu ZW, et al. Cryptosporidium parvum upregulates miR-942-5p expression in HCT-8 cells via TLR2/TLR4-NF-κB signaling[J]. Parasit Vectors, 2020, 13(1): 435. | [11] | Crawford CK, Kol A. The mucosal innate immune response to Cryptosporidium parvum, a global one health issue[J]. Front Cell Infect Microbiol, 2021, 11: 689401. | [12] | Barakat FM, McDonald V, Foster GR, et al. Cryptosporidium parvum infection rapidly induces a protective innate immune response involving type Ⅰ interferon[J]. J Infect Dis, 2009, 200(10): 1548-1555. | [13] | 李腾, 沈玉娟, 崔丽君, 等. 长链非编码RNA NEAT1通过调控IL-8参与肠上皮细胞抗隐孢子虫反应[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 487-492. | | Li T, Shen YJ, Cui LJ, et al. Long non-coding RNA NEAT1 involves in intestinal epithelial cell response against Cryptosporidium parvum infection via regulating IL-8 expression[J]. Chin J Parasitol Parasit Dis, 2022, 40(4): 487-492. (in Chinese) | [14] | Unterholzner L. The interferon response to intracellular DNA: Why so many receptors?[J]. Immunobiology, 2013, 218(11): 1312-1321. | [15] | Wu JX, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids[J]. Annu Rev Immunol, 2014, 32: 461-488. | [16] | Chen Q, Sun LJ, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing[J]. Nat Immunol, 2016, 17(10): 1142-1149. | [17] | Sun YF, Cheng Y. STING or sting: cGAS-STING-mediated immune response to protozoan parasites[J]. Trends Parasitol, 2020, 36(9): 773-784. | [18] | Hu Y, Chen BJ, Yang F, et al. Emerging role of the cGAS-STING signaling pathway in autoimmune diseases: Biologic function, mechanisms and clinical prospection[J]. Autoimmun Rev, 2022, 21(9): 103155. | [19] | Ding FX, Liu JY, Ai KL, et al. Simultaneous activation of pyroptosis and cGAS-STING pathway with epigenetic/photodynamic nanotheranostic for enhanced tumor photoimmunotherapy[J]. Adv Mater, 2024, 36(7): e2306419. | [20] | Wang PY, Li SJ, Zhao YC, et al. The GRA15 protein from Toxoplasma gondii enhances host defense responses by activating the interferon stimulator STING[J]. J Biol Chem, 2019, 294(45): 16494-16508. | [21] | Hahn WO, Butler NS, Lindner SE, et al. cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses[J]. JCI Insight, 2018, 3(2): e94142. | [22] | Liang L, Shen YJ, Hu Y, et al. cGAS exacerbates Schistosoma japonicum infection in a STING-type Ⅰ IFN-dependent and independent manner[J]. PLoS Pathog, 2022, 18(2): e1010233. | [23] | Tan XJ, Sun LJ, Chen JQ, et al. Detection of microbial infections through innate immune sensing of nucleic acids[J]. Annu Rev Microbiol, 2018, 72: 447-478. | [24] | Sisquella X, Ofir-Birin Y, Pimentel MA, et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors[J]. Nat Commun, 2017, 8(1): 1985. | [25] | Ablasser A, Chen ZJ. cGAS in action: Expanding roles in immunity and inflammation[J]. Science, 2019, 363(6431): eaat8657. | [26] | de Oliveira Mann CC, Orzalli MH, King DS, et al. Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation[J]. Cell Rep, 2019, 27(4): 1165-1175.e5. | [27] | Zheng WL, Liu AJ, Xia NW, et al. How the innate immune DNA sensing cGAS-STING pathway is involved in apoptosis[J]. Int J Mol Sci, 2023, 24(3): 3029. | [28] | Chauvin SD, Stinson WA, Platt DJ, et al. Regulation of cGAS and STING signaling during inflammation and infection[J]. J Biol Chem, 2023, 299(7): 104866. |
|