[1] | Pan Y, Chen HQ. Research status of tick-borne diseases[J]. Today Anim Husb Vet Med, 2021, 37(8): 83-84. (in Chinese) | | (潘瑶, 陈和强. 蜱传病研究现状[J]. 今日畜牧兽医, 2021, 37(8): 83-84.) | [2] | Wu JJ, Zhou JL. Progress on babesiosis[J]. Prog Vet Med, 2013, 34(12): 173-178. (in Chinese) | | (吴家俊, 周金林. 巴贝斯虫病研究进展[J]. 动物医学进展, 2013, 34(12): 173-178.) | [3] | Fu TT, Bai XG, Tang F, et al. Investigation on vector tick and tick-borne pathogens in sheep in some regions of Shaanxi and Liaoning Province[J]. Chin J Vet Med, 2023, 59(6): 1-8. (in Chinese) | | (付婷婷, 白新鸽, 汤芳, 等. 陕西和辽宁部分地区羊源媒介蜱类及其携带病原体调查[J]. 中国兽医杂志, 2023, 59(6): 1-8.) | [4] | Zhang MC. Occurrence characteristics and control measures of babesiosis in beef cattle[J]. China Anim Health, 2024, 26(1): 47-48, 50. (in Chinese) | | (张明成. 肉牛巴贝斯虫病的发病特点及防治措施[J]. 中国动物保健, 2024, 26(1): 47-48, 50.) | [5] | Alzan HF, Bastos RG, Ueti MW, et al. Assessment of Babesia bovis 6cys A and 6cys B as components of transmission blocking vaccines for babesiosis[J]. Parasit Vectors, 2021, 14(1): 210. | [6] | Becker CA, Malandrin L, Depoix D, et al. Identification of three CCp genes in Babesia divergens: novel markers for sexual stages parasites[J]. Mol Biochem Parasitol, 2010, 174(1): 36-43. | [7] | Hussein HE, Johnson WC, Ueti MW. Differential paired stage-specific expression of Babesia bovis cysteine-rich GCC2/GCC3 domain family proteins (BboGDP) during development within Rhipicephalus microplus[J]. Parasit Vectors, 2023, 16(1): 16. | [8] | Zheng WQ, Umemiya-Shirafuji R, Zhang Q, et al. Porin expression profiles in Haemaphysalis longicornis infected with Babesia microti[J]. Front Physiol, 2020, 11: 502. | [9] | Martins LA, Palmisano G, Cortez M, et al. The intracellular bacterium Rickettsia rickettsii exerts an inhibitory effect on the apoptosis of tick cells[J]. Parasit Vectors, 2020, 13(1): 603. | [10] | Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106-1121. | [11] | Hu SM. Identification and application potential of tick apoptosis-related molecules RhBcl-2 and RhBax[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021: 1-7. (in Chinese) | | (胡善明. 蜱凋亡相关分子RhBcl-2和RhBax的鉴定及其应用潜力研究[D]. 北京: 中国农业科学院, 2021: 1-7.) | [12] | Wang YN, Hu SM, Tuerdi M, et al. Initiator and executioner caspases in salivary gland apoptosis of Rhipicephalus haemaphysaloides[J]. Parasit Vectors, 2020, 13(1): 288. | [13] | Yu XM, Zhou YZ, Cao J, et al. Caspase-1 participates in apoptosis of salivary glands in Rhipicephalus haemaphysaloides[J]. Parasit Vectors, 2017, 10(1): 225. | [14] | Goonawardane N, Upstone L, Harris M, et al. Identification of host factors differentially induced by clinically diverse strains of tick-borne encephalitis virus[J]. J Virol, 2022, 96(18): e0081822. | [15] | Wu JJ, Cao J, Zhou YZ, et al. Evaluation on infectivity of Babesia microti to domestic animals and ticks outside the Ixodes genus[J]. Front Microbiol, 2017, 8: 1915. | [16] | Zhou JL, Zhou YZ, Cao J, et al. Distinctive microRNA profiles in the salivary glands of Haemaphysalis longicornis related to tick blood-feeding[J]. Exp Appl Acarol, 2013, 59(3): 339-349. | [17] | Tanaka M, Liao M, Zhou JL, et al. Molecular cloning of two caspase-like genes from the hard tick Haemaphysalis longicornis[J]. J Vet Med Sci, 2007, 69(1): 85-90. | [18] | Yu XM, Gong HY, Zhou YZ, et al. Differential sialotranscriptomes of unfed and fed Rhipicephalus haemaphysaloides, with particular regard to differentially expressed genes of cysteine proteases[J]. Parasit Vectors, 2015, 8: 597. | [19] | Barillas-Mury C, Ribeiro JMC, Valenzuela JG. Understanding pathogen survival and transmission by arthropod vectors to prevent human disease[J]. Science, 2022, 377(6614): eabc2757. | [20] | Hughes SA, Lin M, Weir A, et al. Caspase-8-driven apoptotic and pyroptotic crosstalk causes cell death and IL-1β release in X-linked inhibitor of apoptosis (XIAP) deficiency[J]. EMBO J, 2023, 42(5): e110468. | [21] | Pandian N, Kanneganti TD. PANoptosis: a unique innate immune inflammatory cell death modality[J]. J Immunol, 2022, 209(9): 1625-1633. | [22] | Contreras M, Villar M, Alberdi P, et al. Vaccinomics approach to tick vaccine development[J]. Methods Mol Biol, 2016, 1404: 275-286. | [23] | Villar M, Marina A, de la Fuente J. Applying proteomics to tick vaccine development: where are we?[J]. Expert Rev Proteomics, 2017, 14(3): 211-221. | [24] | Muhanguzi D, Ndekezi C, Nkamwesiga J, et al. Anti-tick vaccines: current advances and future prospects[J]. Methods Mol Biol, 2022, 2411: 253-267. | [25] | de la Fuente J, Mazuecos L, Contreras M. Innovative approaches for the control of ticks and tick-borne diseases[J]. Ticks Tick Borne Dis, 2023, 14(6): 102227. | [26] | Neelakanta G, Sultana H. Transmission-blocking vaccines: focus on anti-vector vaccines against tick-borne diseases[J]. Arch Immunol Ther Exp, 2015, 63(3): 169-179. | [27] | Anti-tick and pathogen transmission blocking vaccines[J]. Parasite Immunol, 2021, 43(5): e12831. | [28] | Schuijt TJ, Coumou J, Narasimhan S, et al. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the Lyme disease agent[J]. Cell Host Microbe, 2011, 10(2): 136-146. | [29] | Hu YH, Zeng H, Zhang JC, et al. Gene cloning, expression and immunogenicity of the protective antigen subolesin in Dermacentor silvarum[J]. Korean J Parasitol, 2014, 52(1): 93-97. | [30] | Hajdu?ek O, Síma R, Ayllón N, et al. Interaction of the tick immune system with transmitted pathogens[J]. Front Cell Infect Microbiol, 2013, 3: 26. | [31] | Miyoshi T, Tsuji N, Islam MK, et al. Cloning and molecular characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis[J]. Insect Biochem Mol Biol, 2004, 34(8): 799-808. | [32] | Zhang P, Tian ZC, Liu GY, et al. Characterization of acid phosphatase from the tick Haemaphysalis longicornis[J]. Vet Parasitol, 2011, 182(2/3/4): 287-296. |
|