[1] | Franklinos LHV, Jones KE, Redding DW, et al. The effect of global change on mosquito-borne disease[J]. Lancet Infect Dis, 2019, 19(9): e302-e312. | [2] | Wilder-Smith A, Lindsay SW, Scott TW, et al. The lancet commission on dengue and other Aedes-transmitted viral diseases[J]. Lancet, 2020, 395(10241): 1890-1891. | [3] | World Health Organization. World malaria report 2021[R]. Geneva: WHO, 2021. | [4] | Kain P, Boyle SM, Tharadra SK, et al. Odour receptors and neurons for DEET and new insect repellents[J]. Nature, 2013, 502(7472): 507-512. | [5] | Finda MF, Christofides N, Lezaun J, et al. Opinions of key stakeholders on alternative interventions for malaria control and elimination in Tanzania[J]. Malar J, 2020, 19: 164. | [6] | Kumar D, Kumar P, Singh H, et al. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges[J]. Environ Sci Pollut Res Int, 2020, 27(21): 25987-26024. | [7] | Lee JY, Woo RM, Choi CJ, et al. Beauveria bassiana for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults shows high conidia persistence and productivity[J]. AMB Express, 2019, 9(1): 1-9. | [8] | Schaffner F, Mathis A. Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future[J]. Lancet Infect Dis, 2014, 14(12): 1271-1280. | [9] | Roiz D, Wilson AL, Scott TW, et al. Integrated Aedes management for the control of Aedes-borne diseases[J]. PLoS Neglected Trop Dis, 2018, 12(12): e0006845. | [10] | Picollo MI, Vassena C, Orihuela PS, et al. High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera ∶ Reduviidae) from northern Argentina[J]. J Med Entomol, 2005, 42(4): 637-642. | [11] | Council SE, Savage AM, Urban JM, et al. Diversity and evolution of the primate skin microbiome[J]. Proc R Soc B, 2016, 283(1822): 20152586. | [12] | Michalet S, Minard G, Chevalier W, et al. Identification of human skin bacteria attractive to the Asian tiger mosquito[J]. Environ Microbiol, 2019, 21(12): 4662-4674. | [13] | Hill SR, Ignell R. Modulation of odour-guided behaviour in mosquitoes[J]. Cell Tissue Res, 2021, 383(1): 195-206. | [14] | Omondi AB, Ghaninia M, Dawit M, et al. Age-dependent regulation of host seeking in Anopheles coluzzii[J]. Sci Rep, 2019, 9(1): 9699. | [15] | Matthews BJ, McBride CS, DeGennaro M, et al. The neurotranscriptome of the Aedes aegypti mosquito[J]. BMC Genomics, 2016, 17: 32. | [16] | Ye Z, Liu F, Liu N. Olfactory responses of southern house mosquito, Culex quinquefasciatus, to human odorants[J]. Chem Senses, 2016, 41(5): 441-447. | [17] | Wolff GH, Riffell JA. Olfaction, experience and neural mechanisms underlying mosquito host preference[J]. J Exp Biol, 2018, 221(Pt4): jeb157131. | [18] | Gu ZY, Zhao T, Li CX. Research progress on odor binding proteins and odor receptors of mosquitoes[J]. Chin J Parasitol Parasit Dis, 2020, 38(6): 753-757. (in Chinese) | [18] | (谷真毓, 赵腾, 李春晓. 蚊虫气味结合蛋白和气味受体研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 753-757.) | [19] | Bernier UR, Kline DL, Barnard DR, et al. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti)[J]. Anal Chem, 2000, 72(4): 747-756. | [20] | Byrd AL, Belkaid Y, Segre JA. The human skin microbiome[J]. Nat Rev Microbiol, 2018, 16(3): 143-155. | [21] | Mayer S, Hazenkamp M, Kluttig M, et al. Inhibition of microbial production of the malodorous substance isovaleric acid by 4, 4’ dichloro 2-hydroxydiphenyl ether (DCPP)[J]. Microbiologyopen, 2021, 10(2): e1174. | [22] | Adamczyk K, Garncarczyk A, Antończak P, et al. The foot microbiome[J]. J Cosmet Dermatol, 2020, 19(5): 1039-1043. | [23] | Verhulst NO, Weldegergis BT, Menger D, et al. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds[J]. Sci Rep, 2016, 6: 27141. | [24] | Stevens D, Cornmell R, Taylor D, et al. Spatial variations in the microbial community structure and diversity of the human foot is associated with the production of odorous volatiles[J]. FEMS Microbiol Ecol, 2015, 91(1): 1-11. | [25] | Verhulst NO, Andriessen R, Groenhagen U, et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria[J]. PLoS One, 2010, 5(12): e15829. | [26] | Verhulst NO, Beijleveld H, Knols BG, et al. Cultured skin microbiota attracts malaria mosquitoes[J]. Malar J, 2009, 8: 1-12. | [27] | Busula AO, Takken W, DE Boer JG, et al. Variation in host preferences of malaria mosquitoes is mediated by skin bacterial volatiles[J]. Med Vet Entomol, 2017, 31(3): 320-326. | [28] | Grice EA, Kong HH, Renaud G, et al. A diversity profile of the human skin microbiota[J]. Genome Res, 2008, 18(7): 1043-1050. | [29] | Takken W, Verhulst NO. Chemical signaling in mosquito-host interactions: the role of human skin microbiota[J]. Curr Opin Insect Sci, 2017, 20: 68-74. | [30] | Edmonds-Wilson SL, Nurinova NI, Zapka CA, et al. Review of human hand microbiome research[J]. J Dermatol Sci, 2015, 80(1): 3-12. | [31] | Urban J, Fergus DJ, Savage AM, et al. The effect of habitual and experimental antiperspirant and deodorant product use on the armpit microbiome[J]. Peer J, 2016, 4: e1605. | [32] | Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science, 2009, 324(5931): 1190-1192. | [33] | Skowron K, Bauza-Kaszewska J, Kraszewska Z, et al. Human skin microbiome: impact of intrinsic and extrinsic factors on skin microbiota[J]. Microorganisms, 2021, 9(3): 543. | [34] | Xu H, Li H. Acne, the skin microbiome, and antibiotic treatment[J]. Am J Clin Dermatol, 2019, 20(3): 335-344. | [35] | Giacomoni PU, Mammone T, Teri M. Gender-linked differences in human skin[J]. J Dermatol Sci, 2009, 55(3): 144-149. | [36] | Drabińska N, Flynn C, Ratcliffe N, et al. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome[J]. J Breath Res, 2021, 15(3): 034001. | [37] | Majeed S, Hill SR, Birgersson G, et al. Detection and perception of generic host volatiles by mosquitoes modulate host preference: context dependence of (R)-1-octen-3-ol[J]. R Soc Open Sci, 2016, 3(11): 160467. | [38] | Dormont L, Bessière JM, Cohuet A. Human skin volatiles: a review[J]. J Chem Ecol, 2013, 39(5): 569-578. | [39] | Frei J, Kröber T, Troccaz M, et al. Behavioral response of the malaria mosquito, Anopheles gambiae, to human sweat inoculated with axilla bacteria and to volatiles composing human axillary odor[J]. Chem Senses, 2017, 42(2): 121-131. | [40] | Ara K, Hama M, Akiba S, et al. Foot odor due to microbial metabolism and its control[J]. Can J Microbiol, 2006, 52(4): 357-364. | [41] | Bawdon D, Cox DS, Ashford D, et al. Identification of axillary Staphylococcus sp. involved in the production of the malodorous thioalcohol 3-methyl-3-sufanylhexan-1-ol[J]. FEMS Microbiol Lett, 2015, 362(16): fnv111. | [42] | Mogilnicka I, Bogucki P, Ufnal M. Microbiota and malodor-etiology and management[J]. Int J Mol Sci, 2020, 21(8): 2886. | [43] | Ruiz-López MJ. Mosquito behavior and vertebrate microbiota interaction: implications for pathogen transmission[J]. Front Microbiol, 2020, 11: 573371. | [44] | Wooding M, Naudé Y, Rohwer E, et al. Controlling mosquitoes with semiochemicals: a review[J]. Parasit Vectors, 2020, 13(1): 80. | [45] | Verhulst NO, Mbadi PA, Kiss GB, et al. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota[J]. Malar J, 2011, 10: 28. | [46] | Xin WL, Wang ZD, Han ZJ, et al. Effects of several attractants on the behavior and electroantennograms of Aedes albopictus[J]. Chin J Appl Entomol, 2015, 52(4): 890-895.(in Chinese) | [46] | (忻伟隆, 王宗德, 韩招久, 等. 白纹伊蚊对几种引诱物的行为和触角电位反应[J]. 应用昆虫学报, 2015, 52(4): 890-895.) | [47] | Yu J, Li L, Gan ZC, et al. Attraction of several human odorous chemicals to mosquitoes[J]. Chin J Hyg Insectic Equip, 2012, 18(2): 102-105. (in Chinese) | [47] | (余静, 李黎, 甘志才, 等. 几种人体气味物质对蚊虫引诱效果的研究[J]. 中华卫生杀虫药械, 2012, 18(2): 102-105.) | [48] | McBride CS, Baier F, Omondi AB, et al. Evolution of mosquito preference for humans linked to an odorant receptor[J]. Nature, 2014, 515(7526): 222-227. | [49] | Hallem EA, Nicole Fox A, Zwiebel LJ, et al. Olfaction: mosquito receptor for human-sweat odorant[J]. Nature, 2004, 427(6971): 212-213. | [50] | Pitts RJ, Derryberry SL, Zhang Z, et al. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids[J]. Sci Rep, 2017, 7: 40297. | [51] | Potter CJ. Olfaction: mosquitoes love your acid odors[J]. Curr Biol, 2019, 29(8): R282-R284. | [52] | Raji JI, Melo N, Castillo JS, et al. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway[J]. Curr Biol, 2019, 29(8): 1253-1262.e7. | [53] | Speth Z, Kaur G, Mazolewski D, et al. Characterization of Anopheles stephensi odorant receptor 8, an abundant component of the mouthpart chemosensory transcriptome[J]. Insects, 2021, 12(7): 593. | [54] | Hall DR, Beevor PS, Cork A, et al. 1-Octen-3-ol. A potent olfactory stimulant and attractant for tsetse isolated from cattle odours[J]. Int J Trop Insect Sci, 1984, 5(5): 335-339. | [55] | Becker N, Zgomba M, Petric D, et al. Comparison of carbon dioxide, octenol and a host-odour as mosquito attractants in the Upper Rhine Valley, Germany[J]. Med Vet Entomol, 1995, 9(4): 377-380. | [56] | Allan SA, Bernier UR, Kline DL. Laboratory evaluation of avian odors for mosquito (Diptera ∶ Culicidae) attraction[J]. J Med Entomol, 2006, 43(2): 225-231. | [57] | Rubio-Palis Y. Evaluation of light traps combined with carbon dioxide and 1-octen-3-ol to collect anophelines in Venezuela[J]. J Am Mosq Control Assoc, 1996, 12(1): 91-96. | [58] | Takken W, Kline DL. Carbon dioxide and 1-octen-3-ol as mosquito attractants[J]. J Am Mosq Control Assoc, 1989, 5(3): 311-316. | [59] | Roiz D, Duperier S, Roussel M, et al. Trapping the tiger: Efficacy of the novel BG-sentinel 2 with several attractants and carbon dioxide for collecting Aedes albopictus (Diptera ∶ Culicidae) in southern France[J]. J Med Entomol, 2016, 53(2): 460-465. | [60] | Mweresa CK, Mukabana WR, Omusula P, et al. Enhancing attraction of African malaria vectors to a synthetic odor blend[J]. J Chem Ecol, 2016, 42(6): 508-516. |
|