[1] | Xu J, Li SZ, Zhang LJ, et al. Surveillance-based evidence: elimination of schistosomiasis as a public health problem in the People’s Republic of China[J]. Infect Dis Poverty, 2020, 9:63. | [2] | Zhang LJ, Xu ZM, Dang H, et al. Endemic status of schistosomiasis in People’s Republic of China in 2019[J]. Chin J Schisto Control, 2020, 32(6):551-558. (in Chinese) | [2] | (张利娟, 徐志敏, 党辉, 等. 2019年全国血吸虫病疫情通报[J]. 中国血吸虫病防治杂志, 2020, 32(6):551-558.) | [3] | Wu W, Feng AC, Huang YX. Research and control of advanced schistosomiasis japonica in China[J]. Parasitol Res, 2015, 114(1):17-27. | [4] | Song L, Wu X, Zhang B, et al. A cross-sectional survey comparing a free treatment program for advanced schistosomiasis japonica to a general assistance program[J]. Parasitol Res, 2017, 116(11):2901-2909. | [5] | Kamdem SD, Moyou-Somo R, Brombacher F, et al. Host regulators of liver fibrosis during human schistosomiasis[J]. Front Immunol, 2018, 9:2781. | [6] | Guimarães CM, Marcello DAJ, Mauro PJ. Schistosomiasis: clinical management of liver disease[J]. Clin Liver Dis (Hoboken), 2015, 6(3):59-62. | [7] | Cabantous S, Hou XY, Louis L, et al. Evidence for an important role of host microRNAs in regulating hepatic fibrosis in humans infected with Schistosoma japonicum[J]. Int J Parasitol, 2017, 47(13):823-830. | [8] | Cai PF, Mu Y, Olveda RM, et al. Serum exosomal miRNAs for grading hepatic fibrosis due to schistosomiasis[J]. Int J Mol Sci, 2020, 21(10):E3560. | [9] | Xiao Q, Yu H, Zhu X. The associations of hub gene polymorphisms in PI3K/AKT/mTOR pathway and schistosomiasis japonica infection and hepatic fibrosis[J]. Infect Genet Evol, 2020, 85:104423. | [10] | Long X, Chen Q, Zhao JP, et al. An IL-13 promoter polymorphism associated with liver fibrosis in patients with Schistosoma japonicum[J]. PLoS One, 2015, 10(8):e0135360. | [11] | Zhu X, Zhang J, Fan W, et al. MAPKAP1 rs10118570 polymorphism is associated with anti-infection and anti-hepatic fibrogenesis in schistosomiasis japonica[J]. PLoS One, 2014, 9(8):e105995. | [12] | Guan F, Zhang CY, Jiang CJ, et al. ApoE deficiency promotes hepatic pathology by aggravating Th17/Treg imbalance in murine schistosomiasis japonica[J]. Parasite Immunol, 2020, 42(12):e12785. | [13] | He X, Pan WQ. Research progress on miRNA-mediated schistosome-host interactions[J]. Chin J Parasitol Parasit Dis, 2020, 38(3):259-262. (in Chinese) | [13] | (何兴, 潘卫庆. miRNA介导血吸虫和宿主相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(3):259-262.) | [14] | Wang Y, Fan X, Lei N, et al. A microRNA derived from Schistosoma japonicum promotes schistosomiasis hepatic fibrosis by targeting host secreted frizzled-related protein 1[J]. Front Cell Infect Microbiol, 2020, 10:101. | [15] | He X, Wang YG, Fan XB, et al. A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor Ⅲ[J]. J Hepatol, 2020, 72(3):519-527. | [16] | Wang LF, Liao Y, Yang RB, et al. Sja-miR-71a in schistosome egg-derived extracellular vesicles suppresses liver fibrosis caused by schistosomiasis via targeting semaphorin 4D[J]. J Extracell Vesicles, 2020, 9(1):1785738. | [17] | Zhou YH, Yang YY, Fan XL, et al. The role of Th17/Treg imbalance in liver fibrosis in schistosomiasis[J]. Chin J Parasitol Parasit Dis, 2017, 35(1):89-92. (in Chinese) | [17] | (周永华, 杨莹莹, 范小琳, 等. Th17/Treg免疫失衡在血吸虫病肝纤维化中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(1):89-92.) | [18] | Wang XL, Hu Y, Cao JP. Associations of natural killer cells and their receptors with liver fibrosis in schistosomiasis[J]. Chin J Parasitol Parasit Dis, 2018, 36(5):504-509. (in Chinese) | [18] | (王晓玲, 胡媛, 曹建平. 自然杀伤细胞及其受体与血吸虫病肝纤维化[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5):504-509.) | [19] | Liu X, Qi YF, Yu YR. Effects of soluble egg antigens on hepatic stellate cells in the progression of schistosomiasis-associated liver fibrosis[J]. Chin J Parasitol Parasit Dis, 2019, 37(2):218-222. (in Chinese) | [19] | (刘欣, 齐永芬, 鱼艳荣. 血吸虫病肝纤维化中可溶性虫卵抗原对肝星状细胞的作用[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(2):218-222.) | [20] | Chen XJ, Xu ZP, Wei C, et al. Follicular helper T cells recruit eosinophils into host liver by producing CXCL12 during Schistosoma japonicum infection[J]. J Cell Mol Med, 2020, 24(4):2566-2572. | [21] | Gieseck RL 3rd, Ramalingam TR, Hart KM, et al. Interleukin-13 activates distinct cellular pathways leading to ductular reaction, steatosis, and fibrosis[J]. Immunity, 2016, 45(1):145-158. | [22] | Liu X, Zhang YR, Cai C, et al. Taurine alleviates Schistosoma-induced liver injury by inhibiting the TXNIP/NLRP3 inflammasome signal pathway and pyroptosis[J]. Infect Immun, 2019, 87(12):e00732-e00719. | [23] | Zhang LN, Wang XF, Qi QQ, et al. Study on role of TIGIT signal in Th1/Th2 balance in Schistosoma japonicum-infected mice[J]. Chin J Schisto Control, 2018, 30(2):136-139, 144. (in Chinese) | [23] | (张丽娜, 王小番, 齐倩倩, 等. TIGIT信号在日本血吸虫感染小鼠Th1/Th2反应平衡中的作用研究[J]. 中国血吸虫病防治杂志, 2018, 30(2):136-139, 144.) | [24] | Nono JK, Ndlovu H, Aziz NA, et al. Host regulation of liver fibroproliferative pathology during experimental schistosomiasis via interleukin-4 receptor alpha[J]. PLoS Negl Trop Dis, 2017, 11(8):e0005861. | [25] | Zhu J, Zhang W, Zhang L, et al. IL-7 suppresses macrophage autophagy and promotes liver pathology in Schistosoma japonicum-infected mice[J]. J Cell Mol Med, 2018, 22(7):3353-3363. | [26] | Zhao YM, Dang ZS, Chong SG. Mmu-miR-92a-2-5p targets TLR2 to relieve Schistosoma japonicum-induced liver fibrosis[J]. Int Immunopharmacol, 2019, 69:126-135. | [27] | Liu C, Zhang YS, Chen F, et al. Immunopathology in schistosomiasis is regulated by TLR2, 4- and IFN-γ-activated MSC through modulating Th1/Th2 responses[J]. Stem Cell Res Ther, 2020, 11(1):217. | [28] | Vicentino ARR, Carneiro VC, Allonso D, et al. Emerging role of HMGB1 in the pathogenesis of schistosomiasis liver fibrosis[J]. Front Immunol, 2018, 9:1979. | [29] | Deng JH, Tao R, Song QQ, et al. Regulation of hepatic stellate cell membrane receptors by Hsp47-shRNA affects hepatic fibrosis in mice with Schistosoma japonicum infection[J]. Chin J Parasitol Parasit Dis, 2018, 36(4):317-324. (in Chinese) | [29] | (邓菊红, 陶然, 宋启琴, 等. 热休克蛋白47-shRNA调节肝星状细胞膜受体对日本血吸虫鼠肝纤维化的影响[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4):317-324.) | [30] | Kong HY, He JN, Guo SS, et al. Endothelin receptors promote schistosomiasis-induced hepatic fibrosis via splenic B cells[J]. PLoS Pathog, 2020, 16(10):e1008947. | [31] | Chuah C, Jones MK, McManus DP, et al. Characterising granuloma regression and liver recovery in a murine model of schistosomiasis japonica[J]. Int J Parasitol, 2016, 46(4):239-252. | [32] | Li G, Lian LF, Huang SS, et al. Nomograms to predict 2-year overall survival and advanced schistosomiasis-specific survival after discharge: a competing risk analysis[J]. J Transl Med, 2020, 18(1):187. | [33] | Ning A, Wu XY, Li HY, et al. Abnormal liver function in different patients with Schistosoma japonicum[J]. Parasitol Res, 2015, 114(1):85-90. | [34] | Omar HH. Impact of chronic schistosomiasis and HBV/HCV co-infection on the liver: current perspectives[J]. Hepatic Med, 2019, 11:131-136. | [35] | Xu F, Cheng RT, Miao SH, et al. Prior Toxoplasma gondii infection ameliorates liver fibrosis induced by Schistosoma japonicum through inhibiting Th2 response and improving balance of intestinal flora in mice[J]. Int J Mol Sci, 2020, 21(8):E2711. | [36] | Ding YY, Tao ZH, Wang HJ, et al. Predictive value of the red blood cell distribution width-to-platelet ratio for hepatic fibrosis[J]. Scand J Gastroenterol, 2019, 54(1):81-86. | [37] | Cai PF, Mu Y, Olveda RM, et al. Circulating miRNAs as footprints for liver fibrosis grading in schistosomiasis[J]. EBioMedicine, 2018, 37:334-343. | [38] | Lambrecht J, Jan Poortmans P, Verhulst S, et al. Circulating ECV-associated miRNAs as potential clinical biomarkers in early stage HBV and HCV induced liver fibrosis[J]. Front Pharmacol, 2017, 8:56. | [39] | Matsuura K, de Giorgi V, Schechterly C, et al. Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic hepatitis C[J]. Hepatology, 2016, 64(3):732-745. | [40] | Wu S, Tseng Y, Xu N, et al. Evaluation of transient elastography in assessing liver fibrosis in patients with advanced schistosomiasis japonica[J]. Parasitol Int, 2018, 67(3):302-308. | [41] | Carvalho Santos J, Dória Batista A, Maria Mola Vasconcelos C, et al. Liver ultrasound elastography for the evaluation of periportal fibrosis in schistosomiasis mansoni: a cross-sectional study[J]. PLoS Negl Trop Dis, 2018, 12(11):e0006868. | [42] | Cheng DY, Wan G, Sun L, et al. A novel diagnostic nomogram for noninvasive evaluating liver fibrosis in patients with chronic hepatitis B virus infection[J]. Biomed Res Int, 2020, 2020:5218930. | [43] | Gatselis NK, Tornai T, Shums Z, et al. Golgi protein-73: a biomarker for assessing cirrhosis and prognosis of liver disease patients[J]. World J Gastroenterol, 2020, 26(34):5130-5145. | [44] | Waghorn PA, Ferreira DS, Erstad DJ, et al. Quantitative, noninvasive MRI characterization of disease progression in a mouse model of non-alcoholic steatohepatitis[J]. Sci Rep, 2021, 11(1):6105. | [45] | Zhu DD, Song K, Chen JL, et al. Expression of Septin4 in Schistosoma japonicum-infected mouse livers after praziquantel treatment[J]. Parasit Vectors, 2015, 8:19. | [46] | Liu JF, Kong DL, Qiu JF, et al. Praziquantel ameliorates CCl4-induced liver fibrosis in mice by inhibiting TGF-β/Smad signalling via up-regulating Smad7 in hepatic stellate cells[J]. Br J Pharmacol, 2019, 176(24):4666-4680. | [47] | Shen J, Wang LF, Peng M, et al. Recombinant Sj16 protein with novel activity alleviates hepatic granulomatous inflammation and fibrosis induced by Schistosoma japonicum associated with M2 macrophages in a mouse model[J]. Parasit Vectors, 2019, 12(1):457. | [48] | Zheng SS, Lu Q, Xu YH, et al. GdCl3 attenuates schistosomiasis japonicum egg-induced granulomatosis accompanied by decreased macrophage infiltration in murine liver[J]. PLoS One, 2015, 10(8):e0132222. | [49] | Hasby Saad MA, El-Anwar N. Bevacizumab as a potential anti-angiogenic therapy in schistosomiasis: a double-edged, but adjustable weapon[J]. Parasite Immunol, 2020, 42(10):e12724. | [50] | Huang P, Zhou MY, Cheng SY, et al. Myricetin possesses anthelmintic activity and attenuates hepatic fibrosis via modulating TGFβ1 and Akt signaling and shifting Th1/Th2 balance in Schistosoma japonicum-infected mice[J]. Front Immunol, 2020, 11:593. | [51] | Boyer-Diaz Z, Aristu-Zabalza P, Andrés-Rozas M, et al. Pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease[J]. J Hepatol, 2021, 74(5):1188-1199. | [52] | Wan CP, Jin F, Du YQ, et al. Genistein improves schistosomiasis liver granuloma and fibrosis via dampening NF-kB signaling in mice[J]. Parasitol Res, 2017, 116(4):1165-1174. | [53] | Huang YZ, Lu J, Xu YL, et al. Xiaochaihu decorction relieves liver fibrosis caused by Schistosoma japonicum infection via the HSP47/TGF-β pathway[J]. Parasit Vectors, 2020, 13(1):254. | [54] | Garbuzenko DV. Current approaches to the management of patients with liver cirrhosis who have acute esophageal variceal bleeding[J]. Curr Med Res Opin, 2016, 32(3):467-475. | [55] | Gunarathne LS, Rajapaksha H, Shackel N, et al. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics[J]. World J Gastroenterol, 2020, 26(40):6111-6140. | [56] | An Y, Bai ZH, Xu XB, et al. No benefit of hemostatic drugs on acute upper gastrointestinal bleeding in cirrhosis[J]. Biomed Res Int, 2020, 2020:4097170. | [57] | Toshikuni N, Takuma Y, Tsutsumi M. Management of gastroesophageal varices in cirrhotic patients: current status and future directions[J]. Ann Hepatol, 2016, 15(3):314-325. | [58] | Wang AJ, Zheng XL, Hong JB, et al. Cap-assisted endoscopic sclerotherapy vs ligation in the long-term management of medium esophageal varices: a randomized trial[J]. Clin Transl Gastroenterol, 2020, 11(12):e00285. | [59] | Wang J, Zhang XH, Zhao SL. Transparent cap-assisted endoscopic injection sclerotherapy for the treatment of patients with esophageal varices[J]. Medicine (Baltimore), 2020, 99(24):e20721. | [60] | Park JS, Bang BW, Hong SJ, et al. Efficacy of a novel hemostatic adhesive powder in patients with refractory upper gastrointestinal bleeding: a pilot study[J]. Endoscopy, 2019, 51(5):458-462. | [61] | Park JS, Kim HK, Shin YW, et al. Novel hemostatic adhesive powder for nonvariceal upper gastrointestinal bleeding[J]. Endosc Int Open, 2019, 7(12):E1763-E1767. | [62] | Ghoz H, Patel P, Stancampiano F, et al. Proton-pump-inhibitor use associated with lower short-term rebleeding and mortality in patients receiving esophageal variceal band ligation: a retrospective cohort study[J]. Eur J Gastroenterol Hepatol, 2020, 32(12):1571-1578. | [63] | Schmidt SC, Mǒller J, Bürgel N, et al. Minimally invasive accessory splenectomy for recurrent gastric variceal bleeding due to left-sided portal hypertension: report of the first case[J]. J Surg Case Rep, 2021, 2021(2):rjab008. | [64] | Tian GJ, Li DY, Yu HB, et al. Splenic bed laparoscopic splenectomy approach for massive splenomegaly secondary to portal hypertension and liver cirrhosis[J]. Am Surg, 2018, 84(6):1033-1038. | [65] | Piano S, Tonon M, Angeli P. Management of ascites and hepatorenal syndrome[J]. Hepatol Int, 2018, 12(Suppl 1):122-134. | [66] | Xu XY, Duan ZP, Ding HG, et al. Chinese guidelines on the management of ascites and its related complications in cirrhosis[J]. Hepatol Int, 2019, 13(1):1-21. | [67] | Yosry A, Soliman ZA, Eletreby R, et al. Oral midodrine is comparable to albumin infusion in cirrhotic patients with refractory ascites undergoing large-volume paracentesis: results of a pilot study[J]. Eur J Gastroenterol Hepatol, 2019, 31(3):345-351. | [68] | Rai N, Singh B, Singh A, et al. Midodrine and tolvaptan in patients with cirrhosis and refractory or recurrent ascites: a randomised pilot study[J]. Liver Int, 2017, 37(3):406-414. | [69] | Pose E, Cardenas A. Translating our current understanding of ascites management into new therapies for patients with cirrhosis and fluid retention[J]. Dig Dis Basel Switz, 2017, 35(4):402-410. | [70] | Bureau C, Thabut D, Oberti F, et al. Transjugular intrahepatic portosystemic shunts with covered stents increase transplant-free survival of patients with cirrhosis and recurrent ascites[J]. Gastroenterology, 2017, 152(1):157-163. | [71] | Bureau C, Adebayo D, Chalret de Rieu M, et al. Alfapump® system vs large volume paracentesis for refractory ascites: a multicenter randomized controlled study[J]. J Hepatol, 2017, 67(5):940-949. | [72] | Li G, Zhou XR, Liu JB, et al. Comparison of three data mining models for prediction of advanced schistosomiasis prognosis in the Hubei Province[J]. PLoS Negl Trop Dis, 2018, 12(2):e6262. | [73] | Fernández L, Mediano P, García R, et al. Risk factors predicting infectious lactational mastitis: decision tree approach versus logistic regression analysis[J]. Matern Child Health J, 2016, 20(9):1895-1903. | [74] | Ashour DS, Abou RD, Maher AM, et al. Hybrid feature extraction techniques for microscopic hepatic fibrosis classification[J]. Microsc Res Tech, 2018, 81(3):338-347. |
|