[1] | O’Meara WP, Mangeni JN, Steketee R, et al. Changes in the burden of malaria in sub-Saharan Africa[J]. Lancet Infect Dis, 2010,10(8):545-555. | [2] | Phyo AP, Nkhoma S, Stepniewska K, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study[J]. Lancet, 2012,379(9830):1960-1966. | [3] | Uwimana A, Legrand E, Stokes BH, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda[J]. Nat Med, 2020,26(10):1602-1608. | [4] | Ranson H, N’Guessan R, Lines J, et al. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?[J]Trends Parasitol, 2011,27(2):91-98. | [5] | Dai LP, Gao GF. Viral targets for vaccines against COVID-19[J]. Nat Rev Immunol, 2021,21(2):73-82. | [6] | Nussenzweig RS, Vanderberg J, Most H, et al. Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei[J]. Nature, 1967,216(5111):160-162. | [7] | Duffy PE, Patrick Gorres J. Malaria vaccines since 2000: progress, priorities, products[J]. NPJ Vaccines, 2020,5(1):48. | [8] | Epstein JE, Tewari K, Lyke KE, et al. Live attenuated malaria vaccine designed to protect through hepatic CD8 T cell immunity[J]. Science, 2011,334(6055):475-480. | [9] | Seder RA, Chang LJ, Enama ME, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine[J]. Science, 2013,341(6152):1359-1365. | [10] | Lyke KE, Ishizuka AS, Berry AA, et al. Attenuated PfSPZ vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection[J]. Proc Natl Acad Sci USA, 2017,114(10):2711-2716. | [11] | Ishizuka AS, Lyke KE, DeZure A, et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination[J]. Nat Med, 2016,22(6):614-623. | [12] | Sissoko MS, Healy SA, Katile A, et al. Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial[J]. Lancet Infect Dis, 2017,17(5):498-509. | [13] | WHO. Malaria vaccine technology roadmap[R]. Geneva: WHO, 2013. | [14] | Gordon DM, McGovern TW, Krzych U, et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine[J]. J Infect Dis, 1995,171(6):1576-1585. | [15] | Bejon P, White MT, Olotu A, et al. Efficacy of RTS,S malaria vaccines: individual-participant pooled analysis of phase 2 data[J]. Lancet Infect Dis, 2013,13(4):319-327. | [16] | RTS, S Clinical Trials Partnership, Agnandji ST, Lell B, et al. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children[J]. N Engl J Med, 2011,365(20):1863-1875. | [17] | RTS, S Clinical Trials Partnership, Agnandji ST, Lell B, et al. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants[J]. N Engl J Med, 2012,367(24):2284-2295. | [18] | TS, S Clinical Trials Partnership. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites[J]. PLoS Med, 2014,11(7):e1001685. | [19] | TS, S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial[J]. Lancet, 2015,386(9988):31-45. | [20] | Keating C. The history of the RTS, S/AS01 malaria vaccine trial[J]. Lancet, 2020,395(10233):1336-1337. | [21] | Collins KA, Snaith R, Cottingham MG, et al. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine[J]. Sci Rep, 2017,7:46621. | [22] | Ewer KJ, O’Hara GA, Duncan CJ, et al. Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation[J]. Nat Commun, 2013,4:2836. | [23] | Ogwang C, Kimani D, Edwards NJ, et al. Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encoding TRAP provides partial protection against Plasmodium falciparum infection in Kenyan adults[J]. Sci Transl Med, 2015,7(286): 286re5. | [24] | Mensah VA, Gueye A, Ndiaye M, et al. Safety, immunogenicity and efficacy of prime-boost vaccination with ChAd63 and MVA encoding ME-TRAP againstPlasmodium falciparum infection in adults in Senegal[J]. PLoS One, 2016,11(12):e0167951. | [25] | Mueller AK, Labaied M, Kappe SH, et al. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine[J]. Nature, 2005,433(7022):164-167. | [26] | Roestenberg M, McCall M, Hopman J, et al. Protection against a malaria challenge by sporozoite inoculation[J]. N Engl J Med, 2009,361(5):468-477. | [27] | Roestenberg M, Teirlinck AC, McCall MB, et al. Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study[J]. Lancet, 2011,377(9779):1770-1776. | [28] | Ocaña-Morgner C, Mota MM, Rodriguez A. Malaria blood stage suppression of liver stage immunity by dendritic cells[J]. J Exp Med, 2003,197(2):143-151. | [29] | Keitany GJ, Kim KS, Krishnamurty AT, et al. Blood stage malaria disrupts humoral immunity to the pre-erythrocytic stage circumsporozoite protein[J]. Cell Rep, 2016,17(12):3193-3205. | [30] | Luke TC, Hoffman SL. Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuatedPlasmodium falciparum sporozoite vaccine[J]. J Exp Biol, 2003,206(Pt 21):3803-3808. | [31] | Butler NS, Schmidt NW, Vaughan AM, et al. Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites[J]. Cell Host Microbe, 2011,9(6):451-462. | [32] | Steinhardt LC, Richie TL, Yego R, et al. Safety, tolerability, and immunogenicity of Plasmodium falciparum sporozoite vaccine administered by direct venous inoculation to infants and young children: findings from an age de-escalation, dose-escalation, double-blind, randomized controlled study in western Kenya[J]. Clin Infect Dis, 2020,71(4):1063-1071. | [33] | Cohen S, McGregor IA, Carrington S. Gamma-globulin and acquired immunity to human malaria[J]. Nature, 1961,192:733-737. | [34] | Sabchareon A, Burnouf T, Ouattara D, et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria[J]. Am J Trop Med Hyg, 1991,45(3):297-308. | [35] | Laurens MB. The promise of a malaria vaccine: are we closer?[J]. Annu Rev Microbiol, 2018,72:273-292. | [36] | Ogutu BR, Apollo OJ, McKinney D, et al. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya[J]. PLoS One, 2009,4(3):e4708. | [37] | Sagara I, Dicko A, Ellis RD, et al. A randomized controlled phase 2 trial of the blood stage AMA1-C1/alhydrogel malaria vaccine in children in Mali[J]. Vaccine, 2009,27(23):3090-3098. | [38] | Sirima SB, Cousens S, Druilhe P. Protection against malaria by MSP3 candidate vaccine[J]. N Engl J Med, 2011,365(11):1062-1064. | [39] | Wright KE, Hjerrild KA, Bartlett J, et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies[J]. Nature, 2014,515(7527):427-430. | [40] | Douglas AD, Baldeviano GC, Lucas CM, et al. A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in Aotus monkeys[J]. Cell Host Microbe, 2015,17(1):130-139. | [41] | Pombo DJ, Lawrence G, Hirunpetcharat C, et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum[J]. Lancet, 2002,360(9333):610-617. | [42] | Elliott SR, Kuns RD, Good MF. Heterologous immunity in the absence of variant-specific antibodies after exposure to subpatent infection with blood-stage malaria[J]. Infect Immun, 2005,73(4):2478-2485. | [43] | Liu TP, Xu GL, Guo B, et al. An essential role for C5aR signaling in the optimal induction of a malaria-specific CD4+ T cell response by a whole-killed blood-stage vaccine[J]. J Immunol, 2013,191(1):178-186. | [44] | Good MF. A whole parasite vaccine to control the blood stages of Plasmodium: the case for lateral thinking[J]. Trends Parasitol, 2011,27(8):335-340. | [45] | Pinzon-Charry A, McPhun V, Kienzle V, et al. Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice[J]. J Clin Invest, 2010,120(8):2967-2978. | [46] | Aly AS, Downie MJ, Mamoun CB, et al. Subpatent infection with nucleoside transporter 1-deficient Plasmodium blood stage parasites confers sterile protection against lethal malaria in mice[J]. Cell Microbiol, 2010,12(7):930-938. | [47] | Ting LM, Gissot M, Coppi A, et al. Attenuated Plasmodium yoelii lacking purine nucleoside phosphorylase confer protective immunity[J]. Nat Med, 2008,14(9):954-958. | [48] | Demarta-Gatsi C, Smith L, Thiberge S, et al. Protection against malaria in mice is induced by blood stage-arresting histamine-releasing factor (HRF)-deficient parasites[J]. J Exp Med, 2016,213(8):1419-1428. | [49] | Good MF, Reiman JM, Rodriguez IB, et al. Cross-species malaria immunity induced by chemically attenuated parasites[J]. J Clin Invest, 2013,123(8):3353-3362. | [50] | Stanisic DI, Fink J, Mayer J, et al. Vaccination with chemically attenuated Plasmodium falciparum asexual blood-stage parasites induces parasite-specific cellular immune responses in malaria-naïve volunteers: a pilot study[J]. BMC Med, 2018,16(1):184. | [51] | Low LM, Ssemaganda A, Liu XQ, et al. Controlled infection immunization using delayed death drug treatment elicits protective immune responses to blood-stage malaria parasites[J]. Infect Immun, 2019,87(1):e00587-e00518. | [52] | Raja AI, Cai YP, Reiman JM, et al. Chemically attenuated blood-stage Plasmodium yoelii parasites induce long-lived and strain-transcending protection[J]. Infect Immun, 2016,84(8):2274-2288. | [53] | Coelho CH, Rappuoli R, Hotez PJ, et al. Transmission-blocking vaccines for malaria: time to talk about vaccine introduction[J]. Trends Parasitol, 2019,35(7):483-486. | [54] | Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum[J]. Nature, 2002,419(6906):498-511. | [55] | Al-Olayan EM, Beetsma AL, Butcher GA, et al. Complete development of mosquito phases of the malaria parasite in vitro[J]. Science, 2002,295(5555):677-679. | [56] | Bao LL, Deng W, Huang BY, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice[J]. Nature, 2020,583(7818):830-833. | [57] | Kaushansky A, Kappe SH. Selection and refinement: the malaria parasite’s infection and exploitation of host hepatocytes[J]. Curr Opin Microbiol, 2015,26:71-78. | [58] | Cowman AF, Tonkin CJ, Tham WH, et al. The molecular basis of erythrocyte invasion by malaria parasites[J]. Cell Host Microbe, 2017,22(2):232-245. | [59] | Raja AI, Stanisic DI, Good MF. Chemical attenuation in the development of a whole-organism malaria vaccine[J]. Infect Immun, 2017,85(7):e00062-17. | [60] | Tran TM, Li SP, Doumbo S, et al. An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to Plasmodium falciparum infection[J]. Clin Infect Dis, 2013,57(1):40-47. | [61] | Sagara I, Sangaré D, Dolo G, et al. A high malaria reinfection rate in children and young adults living under a low entomological inoculation rate in a periurban area of Bamako, Mali[J]. Am J Trop Med Hyg, 2002,66(3):310-313. | [62] | Hoffman SL, Goh LM, Luke TC, et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites[J]. J Infect Dis, 2002,185(8):1155-1164. | [63] | Seder RA, Chang LJ, Enama ME, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine[J]. Science, 2013,341(6152):1359-1365. | [64] | Chakravarty S, Baldeviano GC, Overstreet MG, et al. Effector CD8+ T lymphocytes against liver stages of Plasmodium yoelii do not require gamma interferon for antiparasite activity[J]. Infect Immun, 2008,76(8):3628-3631. | [65] | Fernandez-Ruiz D, Ng WY, Holz LE, et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection[J]. Immunity, 2019,45(4):889-902. | [66] | Olsen TM, Stone BC, Chuenchob V, et al. Prime-and-trap malaria vaccination to generate protective CD8+ liver-resident memory T cells[J]. J Immunol, 2018,201(7):1984-1993. | [67] | Gola A, Silman D, Walters AA, et al. Prime and target immunization protects against liver-stage malaria in mice[J]. Sci Transl Med, 2018,10(460):eaap9128. | [68] | Foquet L, Hermsen CC, van Gemert GJ, et al. Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection[J]. J Clin Invest, 2014,124(1):140-144. | [69] | White MT, Bejon P, Olotu A, et al. The relationship between RTS, S vaccine-induced antibodies, CD4+ T cell responses and protection againstPlasmodium falciparum infection[J]. PLoS One, 2013,8(4):e61395. | [70] | Aliprandini E, Tavares J, Panatieri RH, et al. Cytotoxic anti-circumsporozoite antibodies target malaria sporozoites in the host skin[J]. Nat Microbiol, 2018,3(11):1224-1233. | [71] | Wang LT, Pereira LS, Flores-Garcia Y, et al. A potent anti-malarial human monoclonal antibody targets circumsporozoite protein minor repeats and neutralizes sporozoites in the liver[J]. Immunity, 2020,53(4):733-744. | [72] | Feng GQ, Wines BD, Kurtovic L, et al. Mechanisms and targets of Fcγ-receptor mediated immunity to malaria sporozoites[J]. Nat Commun, 2021,12(1):1742. | [73] | Chakravarty S, Cockburn IA, Kuk S, et al. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes[J]. Nat Med, 2007,13(9):1035-1041. | [74] | Overstreet MG, Cockburn IA, Chen YC, et al. Protective CD8 T cells against Plasmodium liver stages: immunobiology of an ‘unnatural’ immune response[J]. Immunol Rev, 2008,225:272-283. | [75] | Kurup SP, Anthony SM, Hancox LS, et al. Monocyte-derived CD11c+ cells acquire Plasmodium from hepatocytes to prime CD8 T cell immunity to liver-stage malaria[J]. Cell Host Microbe, 2019,25(4):565-577.e6. | [76] | Carvalho LH, Sano G, Hafalla JC, et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages[J]. Nat Med, 2002,8(2):166-170. | [77] | Overstreet MG, Chen YC, Cockburn IA, et al. CD4+ T cells modulate expansion and survival but not functional properties of effector and memory CD8+ T cells induced by malaria sporozoites[J]. PLoS One, 2011,6(1):e15948. | [78] | Zaidi I, Diallo H, Conteh S, et al. gammadelta T cells are required for the induction of sterile immunity during irradiated sporozoite vaccinations[J]. J Immunol, 2017,199(11):3781-3788. | [79] | Minkah NK, Wilder BK, Sheikh AA, et al. Innate immunity limits protective adaptive immune responses against pre-erythrocytic malaria parasites[J]. Nat Commun, 2019,10(1):3950. | [80] | Kisalu NK, Idris AH, Weidle C, et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite[J]. Nat Med, 2018,24(4):408-416. | [81] | Tan J, Sack BK, Oyen D, et al. A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein[J]. Nat Med, 2018,24(4):401-407. | [82] | Cawlfield A, Genito CJ, Beck Z, et al. Safety, toxicity and immunogenicity of a malaria vaccine based on the circumsporozoite protein (FMP013) with the adjuvant army liposome formulation containing QS21 (ALFQ)[J]. Vaccine, 2019,37(29):3793-3803. | [83] | Good MF, Xu HJ, Wykes M, et al. Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research[J]. Annu Rev Immunol, 2005,23:69-99. | [84] | Julien JP, Wardemann H. Antibodies against Plasmodium falciparum malaria at the molecular level[J]. Nat Rev Immunol, 2019,19(12):761-775. | [85] | Kurup SP, Butler NS, Harty JT. T cell-mediated immunity to malaria[J]. Nat Rev Immunol, 2019,19(7):457-471. | [86] | Zander RA, Vijay R, Pack AD, et al. Th1-like Plasmodium-specific memory CD4+ T cells support humoral immunity[J]. Cell Rep, 2018,23(4):1230-1237. | [87] | Junqueira C, Barbosa CRR, Costa PAC, et al. Cytotoxic CD8+ T cells recognize and kill Plasmodium vivax-infected reticulocytes[J]. Nat Med, 2018,24(9):1330-1336. | [88] | Voisine C, Mastelic B, Sponaas AM, et al. Classical CD11c+ dendritic cells, not plasmacytoid dendritic cells, induce T cell responses to Plasmodium chabaudi malaria[J]. Int J Parasitol, 2010,40(6):711-719. | [89] | Guermonprez P, Helft J, Claser C, et al. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection[J]. Nat Med, 2013,19(6):730-738. | [90] | Coban C, Igari Y, Yagi M, et al. Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9[J]. Cell Host Microbe, 2010,7(1):50-61. | [91] | Acquah FK, Adjah J, Williamson KC, et al. Transmission-blocking vaccines: old friends and new prospects[J]. Infect Immun, 2019,87(6):e00775-e00718. | [92] | Simon N, Lasonder E, Scheuermayer M, et al. Malaria parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito midgut[J]. Cell Host Microbe, 2013,13(1):29-41. | [93] | Zhu F, Liu TP, Zhao CH, et al. Whole-killed blood-stage vaccine-induced immunity suppresses the development of malaria parasites in mosquitoes[J]. J Immunol, 2017,198(1):300-307. | [94] | Noland GS, Chowdhury DR, Urban JF Jr, et al. Helminth infection impairs the immunogenicity of a Plasmodium falciparum DNA vaccine, but not irradiated sporozoites, in mice[J]. Vaccine, 2010,28(17):2917-2923. | [95] | Sokhna CS, Faye FBK, Spiegel A, et al. Rapid reappearance of Plasmodium falciparum after drug treatment among Senegalese adults exposed to moderate seasonal transmission[J]. Am J Trop Med Hyg, 2001,65(3):167-170. | [96] | Boutlis CS, Yeo TW, Anstey NM. Malaria tolerance: for whom the cell tolls?[J]. Trends Parasitol, 2006,22(8):371-377. | [97] | Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria[J]. Nat Rev Microbiol, 2017,15(8):479-491. | [98] | Chookajorn T, Ponsuwanna P, Cui L. Mutually exclusive var gene expression in the malaria parasite: multiple layers of regulation[J]. Trends Parasitol, 2008,24(10):455-461. | [99] | Woodberry T, Minigo G, Piera KA, et al. Low-level Plasmodium falciparum blood-stage infection causes dendritic cell apoptosis and dysfunction in healthy volunteers[J]. J Infect Dis, 2012,206(3):333-340. | [100] | Pinzon-Charry A, Woodberry T, Kienzle V, et al. Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria[J]. J Exp Med, 2013,210(8):1635-1646. | [101] | Wilson NS, Behrens GM, Lundie RJ, et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity[J]. Nat Immunol, 2006,7(2):165-172. | [102] | Urban BC, Willcox N, Roberts DJ. A role for CD36 in the regulation of dendritic cell function[J]. Proc Natl Acad Sci USA, 2001,98(15):8750-8755. | [103] | Haque A, Best SE, Montes de Oca M, et al. Type Ⅰ IFN signaling in CD8- DCs impairs Th1-dependent malaria immunity[J]. J Clin Invest, 2014,124(6):2483-2496. | [104] | Montes de Oca M, Kumar R, Rivera FL, et al. Type Ⅰ interferons regulate immune responses in humans with blood-stage Plasmodium falciparum infection[J]. Cell Rep, 2016,17(2):399-412. | [105] | Kimura D, Miyakoda M, Kimura K, et al. Interleukin-27-producing CD4+ T cells regulate protective immunity during malaria parasite infection[J]. Immunity, 2016,44(3):672-682. | [106] | Walther M, Tongren JE, Andrews L, et al. Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection[J]. Immunity, 2005,23(3):287-296. | [107] | Kurup SP, Obeng-Adjei N, Anthony SM, et al. Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4[J]. Nat Med, 2017,23(10):1220-1225. | [108] | Illingworth J, Butler NS, Roetynck S, et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion[J]. J Immunol, 2013,190(3):1038-1047. | [109] | Horne-Debets JM, Faleiro R, Karunarathne DS, et al. PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria[J]. Cell Rep, 2013,5(5):1204-1213. | [110] | Cai JJ, Chen SL, Zhu F, et al. Whole-killed blood-stage vaccine: is it worthwhile to further develop it to control malaria?[J]. Front Microbiol, 2021,12:670775. | [111] | Weiss GE, Crompton PD, Li SP, et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area[J]. J Immunol, 2009,183(3):2176-2182. | [112] | Muellenbeck MF, Ueberheide B, Amulic B, et al. Atypical and classical memory B cells produce Plasmodium falciparumneutralizing antibodies[J]. J Exp Med, 2013,210(2):389-399. | [113] | Portugal S, Tipton CM, Sohn H, et al. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function[J]. Elife, 2015,4:e07218. | [114] | Sullivan RT, Kim CC, Fontana MF, et al. FCRL5 delineates functionally impaired memory B cells associated with Plasmodium falciparum exposure[J]. PLoS Pathog, 2015,11(5):e1004894. | [115] | Obeng-Adjei N, Portugal S, Holla P, et al. Malaria-induced interferon-γ drives the expansion of Tbethi atypical memory B cells[J]. PLoS Pathog, 2017,13(9):e1006576. | [116] | Rodda LB, Pepper M. Metabolic constraints on the B cell response to malaria[J]. Nat Immunol, 2020,21(7):722-724. | [117] | Vijay R, Guthmiller JJ, Sturtz AJ, et al. Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria[J]. Nat Immunol, 2020,21(7):790-801. | [118] | Hirunpetcharat C, Good MF. Deletion of Plasmodium berghei-specific CD4+ T cells adoptively transferred into recipient mice after challenge with homologous parasite[J]. Proc Natl Acad Sci USA, 1998,95(4):1715-1720. | [119] | Wipasa J, Xu H, Stowers A, et al. Apoptotic deletion of Th cells specific for the 19-kDa carboxyl-terminal fragment of merozoite surface protein 1 during malaria infection[J]. J Immunol, 2001,167(7):3903-3909. | [120] | Xu HJ, Wipasa J, Yan HR, et al. The mechanism and significance of deletion of parasite-specific CD4+ T cells in malaria infection[J]. J Exp Med, 2002,195(7):881-892. | [121] | Wykes MN, Zhou YH, Liu XQ, et al. Plasmodium yoelii can ablate vaccine-induced long-term protection in mice[J]. J Immunol, 2005,175(4):2510-2516. | [122] | Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology[J]. Curr Opin Immunol, 2020,65:14-20. |
|