[1] | Liu C, Pitts RJ, Bohbot JD, et al. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae[J]. PLoS Biol, 2010,8(8):e1000467. | [2] | Lutz EK, Lahondère C, Vinauger C, et al. Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: a life history perspective[J]. Curr Opin Insect Sci, 2017,20:75-83. | [3] | Chadee DD, Sutherland JM, Gilles JRL. Diel sugar feeding and reproductive behaviours of Aedes aegypti mosquitoes in Trinidad: with implications for mass release of sterile mosquitoes[J]. Acta Trop, 2014,132:S86-S90. | [4] | Barredo E, DeGennaro M. Not just from blood: mosquito nutrient acquisition from nectar sources[J]. Trends Parasitol, 2020,36(5):473-484. | [5] | Vargo AM, Foster WA. Responsiveness of female Aedes aegypti (Diptera : Culicidae) to flower extracts[J]. J Med Entomol, 1982,19(6):710-718. | [6] | Mauer DJ, Rowley WA. Attraction of Culex pipiens pipiens (Diptera : Culicidae) to flower volatiles[J]. J Med Entomol, 1999,36(4):503-507. | [7] | Otienoburu PE, Ebrahimi B, Phelan PL, et al. Analysis and optimization of a synthetic milkweed floral attractant for mosquitoes[J]. J Chem Ecol, 2012,38(7):873-881. | [8] | Nyasembe VO, Torto B. Volatile phytochemicals as mosquito semiochemicals[J]. Phytochem Lett, 2014,8:196-201. | [9] | Yu BT, Hu Y, Ding YM, et al. Feeding on different attractive flowering plants affects the energy reserves of Culex pipiens pallens adults[J]. Parasitol Res, 2018,117(1):67-73. | [10] | Gouagna LC, Kerampran R, Lebon C, et al. Sugar-source preference, sugar intake and relative nutritional benefits in Anopheles arabiensis males[J]. Acta Trop, 2014,132:S70-S79. | [11] | Hapairai LK, Joseph H, Sang MA, et al. Field evaluation of selected traps and lures for monitoring the filarial and arbovirus vector, Aedes polynesiensis (Diptera : Culicidae), in French Polynesia[J]. J Med Entomol, 2013,50(4):731-739. | [12] | Li Y, Su X, Zhou G, et al. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes[J]. Parasit Vectors, 2016,9(1):446. | [13] | Takken W, Costantini C, Dolo G, et al. Mosquito mating behaviour[M] //Bridging laboratory and field research for genetic control of disease vectors. Dordrecht: Springer Netherlands, 2006: 183-188. | [14] | Pitts RJ, Mozūraitis R, Gauvin-Bialecki A, et al. The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes[J]. Acta Trop, 2014,132:S26-S34. | [15] | Cabrera M, Jaffe K. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera : Culicidae)[J]. J Am Mosq Control Assoc, 2007,23(1):1-10. | [16] | Fawaz EY, Allan SA, Bernier UR, et al. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behavior of Aedes aegypti[J]. J Vector Ecol, 2014,39(2):347-354. | [17] | Anton S, van Loon JJ, Meijerink J, et al. Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes[J]. Arthropod Struct Dev, 2003,32(4):319-327. | [18] | Seenivasagan T, Sharma KR, Shrivastava A, et al. Surface morphology and morphometric analysis of sensilla of Asian tiger mosquito, Aedes albopictus (Skuse): an SEM investigation[J]. J Vector Borne Dis, 2009,46(2):125-135. | [19] | Matthews BJ, McBride CS, DeGennaro M, et al. The neurotranscriptome of the Aedes aegypti mosquito[J]. BMC Genom, 2016,17:32. | [20] | Yan H, Jafari S, Pask G, et al. Evolution, developmental expression and function of odorant receptors in insects[J]. J Exp Biol, 2020, 223(pt suppl 1): jeb208215. | [21] | Gomez-Diaz C, Martin F, Garcia-Fernandez JM, et al. The two main olfactory receptor families in drosophila, ORs and IRs: a comparative approach[J]. Front Cell Neurosci, 2018,12:253. | [22] | Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annu Rev Entomol, 2013,58:373-391. | [23] | Carey AF, Wang GR, Su CY, et al. Odorant reception in the malaria mosquito Anopheles gambiae[J]. Nature, 2010,464(7285):66-71. | [24] | Carraher C, Dalziel J, Jordan MD, et al. Towards an understanding of the structural basis for insect olfaction by odorant receptors[J]. Insect Biochem Mol Biol, 2015,66:31-41. | [25] | Wang GR, Carey AF, Carlson JR, et al. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2010,107(9):4418-4423. | [26] | Chen XG, Jiang X, Gu J, et al. Genome sequence of the Asian tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution[J]. Proc Natl Acad Sci USA, 2016,113(4):E489. | [27] | Matthews BJ, Dudchenko O, Kingan SB, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control[J]. Nature, 2018,563(7732):501-507. | [28] | Liu H, Liu T, Xie L, et al. Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus[J]. Parasit Vectors, 2016,9(1):363. | [29] | Xu PX, Choo YM, de la Rosa A, et al. Mosquito odorant receptor for DEET and methyl jasmonate[J]. Proc Natl Acad Sci USA, 2014,111(46):16592-16597. | [30] | Jones PL, Pask GM, Rinker DC, et al. Functional agonism of insect odorant receptor ion channels[J]. Proc Natl Acad Sci USA, 2011,108(21):8821-8825. | [31] | DeGennaro M, McBride CS, Seeholzer L, et al. Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET[J]. Nature, 2013,498(7455):487-491. | [32] | Raji JI, Melo N, Castillo JS, et al. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway[J]. Curr Biol, 2019, 29(8): 1253-1262.e7. | [33] | Hallem EA, Nicole Fox A, Zwiebel LJ, et al. Olfaction: mosquito receptor for human-sweat odorant[J]. Nature, 2004,427(6971):212-213. | [34] | Pitts RJ, Derryberry SL, Zhang Z, et al. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids[J]. Sci Rep, 2017,7:40297. | [35] | Thireou T, Kythreoti G, Tsitsanou KE, et al. Identification of novel bioinspired synthetic mosquito repellents by combined ligand-based screening and OBP-structure-based molecular docking[J]. Insect Biochem Mol Biol, 2018,98:48-61. | [36] | Kr?ber T, Koussis K, Bourquin M, et al. Odorant-binding protein-based identification of natural spatial repellents for the African malaria mosquito Anopheles gambiae[J]. Insect Biochem Mol Biol, 2018,96:36-50. | [37] | Deng Y, Yan H, Gu J, et al. Molecular and functional characterization of odorant-binding protein genes in an invasive vector mosquito, Aedes albopictus[J]. PLoS One, 2013,8(7):e68836. | [38] | McBride CS, Baier F, Omondi AB, et al. Evolution of mosquito preference for humans linked to an odorant receptor[J]. Nature, 2014,515(7526):222-227. | [39] | Wu Q, Li CX, Liu QM, et al. RNA interference of odorant receptor CquiOR114/117 affects blood-feeding behavior in Culex quinquefasciatus[J]. Acta Trop, 2020,204:105343. | [40] | Pelletier J, Guidolin A, Syed Z, et al. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants[J]. J Chem Ecol, 2010,36(3):245-248. | [41] | Yin J, Choo YM, Duan H, et al. Selectivity of odorant-binding proteins from the southern house mosquito tested against physiologically relevant ligands[J]. Front Physiol, 2015,6:56. | [42] | Wang Y, Li TT, Gong MQ. Advances in research on olfactory receptors of mosquitoes[J]. Chin J Parasitol Parasit Dis, 2020,38(5):647-652. (in Chinese) | [42] | ( 王洋, 李婷婷, 公茂庆. 蚊虫嗅觉受体研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(5):647-652.) | [43] | Schorkopf DL, Spanoudis CG, Mboera LE, et al. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control[J]. PLoS Negl Trop Dis, 2016,10(10):e0005043. | [44] | Wondwosen B, Birgersson G, Tekie H, et al. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis[J]. Malar J, 2018,17(1):90. | [45] | Xie L, Yang W, Liu H, et al. Enhancing attraction of the vector mosquito Aedes albopictus by using a novel synthetic odorant blend[J]. Parasit Vectors, 2019,12(1):382. | [46] | Batista EPA, Ngowo H, Opiyo M, et al. Field evaluation of the BG-Malaria trap for monitoring malaria vectors in rural Tanzanian villages[J]. PLoS One, 2018,13(10):e0205358. | [47] | MacKay AJ, Amador M, Barrera R. An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti[J]. Parasit Vectors, 2013,6:225. | [48] | Stanczyk NM, Brookfield JF, Ignell R, et al. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function[J]. Proc Natl Acad Sci USA, 2010,107(19):8575-8580. | [49] | Verhulst EC, van de Zande L, Beukeboom LW. Insect sex determination: it all evolves around transformer[J]. Curr Opin Genet Dev, 2010,20(4):376-383. | [50] | Day J. Mosquito oviposition behavior and vector control[J]. Insects, 2016,7(4):65. | [51] | Hall AB, Qi YM, Timoshevskiy V, et al. Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females[J]. BMC Genom, 2013,14:273. | [52] | Krzywinska E, Dennison NJ, Lycett GJ, et al. A maleness gene in the malaria mosquito Anopheles gambiae[J]. Science, 2016,353(6294):67-69. | [53] | Criscione F, Qi Y, Tu Z. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi[J]. Elife, 2016,5. | [54] | Qi Y, Wu Y, Saunders R, et al. Guy1, a Y-linked embryonic signal, regulates dosage compensation in Anopheles stephensi by increasing X gene expression[J]. Elife, 2019,8. | [55] | Hall AB, Basu S, Jiang X, et al. Sex determination. A male-determining factor in the mosquito Aedes aegypti[J]. Science, 2015,348(6240):1268-1270. | [56] | Aryan A, Anderson MAE, Biedler JK, et al. Nix alone is sufficient to convert female Aedes aegypti into fertile males and myo-sex is needed for male flight[J]. Proc Natl Acad Sci USA, 2020,117(30):17702-17709. | [57] | Gomulski LM, Mariconti M, Di Cosimo A, et al. The Nix locus on the male-specific homologue of chromosome 1 in Aedes albopictus is a strong candidate for a male-determining factor[J]. Parasit Vectors, 2018,11(suppl 2):647. | [58] | Liu PW, Jin BB, Li XC, et al. Nix is a male-determining factor in the Asian tiger mosquito Aedes albopictus[J]. Insect Biochem Mol Biol, 2020,118:103311. | [59] | Jost E, Laven H. Meiosis in translocation heterozygotes in the mosquito Culex pipiens[J]. Chromosoma, 1971,35(2):184-205. | [60] | Baker RH, Sakai RK. Triploids and male determination in the mosquito, Anopheles culicifacies[J]. J Hered, 1979,70(5):345-346. | [61] | Ferdig MT, Taft AS, Severson DW, et al. Development of a comparative genetic linkage map for Armigeres subalbatus using Aedes aegypti RFLP markers[J]. Genome Res, 1998,8(1):41-47. | [62] | Newton ME, Southern DI, Wood RJ. X and Y chromosomes of Aedes aegypti (L.) distinguished by Giemsa C-banding[J]. Chromosoma, 1974,49(1):41-49. | [63] | Toups MA, Hahn MW. Retrogenes reveal the direction of sex-chromosome evolution in mosquitoes[J]. Genetics, 2010,186(2):763-766. | [64] | Motara MA, Rai KS. Chromosomal differentiation in two species of Aedes and their hybrids revealed by Giemsa C-banding[J]. Chromosoma, 1977,64(2):125-132. | [65] | Mori A, Tomita T, Hidoh O, et al. Comparative linkage map development and identification of an autosomal locus for insensitive acetylcholinesterase-mediated insecticide resistance in Culex tritaeniorhynchus[J]. Insect Mol Biol, 2001,10(3):197-203. | [66] | Malcolm CA, Bourguet D, Ascolillo A, et al. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens[J]. Insect Mol Biol, 1998,7(2):107-120. | [67] | Reidenbach KR, Cook S, Bertone MA, et al. Phylogenetic analysis and temporal diversification of mosquitoes (Diptera : Culicidae) based on nuclear genes and morphology[J]. BMC Evol Biol, 2009,9:298. | [68] | Krzywinski J, Grushko OG, Besansky NJ. Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution[J]. Mol Phylogenetics Evol, 2006,39(2):417-423. | [69] | Wang J, Na JK, Yu Q, et al. Sequencing Papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution[J]. Proc Natl Acad Sci USA, 2012,109(34):13710-13715. | [70] | Hall AB, Papathanos PA, Sharma A, et al. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes[J]. Proc Natl Acad Sci USA, 2016,113(15):E2114-E2123. | [71] | Criscione F, Qi Y, Saunders R, et al. A unique Y gene in the Asian malaria mosquito Anopheles stephensi encodes a small lysine-rich protein and is transcribed at the onset of embryonic development[J]. Insect Mol Biol, 2013,22(4):433-441. | [72] | Salz H, Erickson JW. Sex determination in Drosophila: the view from the top[J]. Fly, 2010,4(1):60-70. | [73] | Biedler JK, Tu Z. Sex determination in mosquitoes[J]. Adv Insect Physiol, 2016,51:37-66. | [74] | Salvemini M, D’Amato R, Petrella V, et al. The orthologue of the fruitfly sex behaviour gene fruitless in the mosquito Aedes aegypti: evolution of genomic organisation and alternative splicing[J]. PLoS One, 2013,8(2):e48554. | [75] | Scali C, Catteruccia F, Li Q, et al. Identification of sex-specific transcripts of the Anopheles gambiae doublesex gene[J]. J Exp Biol, 2005,208(pt 19):3701-3709. | [76] | Zheng X, Zhang D, Li Y, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes[J]. Nature, 2019,572(7767):56-61. | [77] | Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae[J]. Nat Biotechnol, 2016,34(1):78-83. | [78] | Eckhoff PA, Wenger EA, Godfray HC, et al. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics[J]. Proc Natl Acad Sci USA, 2017,114(2):E255-E264. | [79] | Crawford JE, Clarke DW, Criswell V, et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations[J]. Nat Biotechnol, 2020,38(4):482-492. | [80] | Mains JW, Brelsfoard CL, Rose RI, et al. Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes[J]. Sci Rep, 2016,6:33846. | [81] | Kyrou K, Hammond AM, Galizi R, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes[J]. Nat Biotechnol, 2018,36(11):1062-1066. |
|