中国寄生虫学与寄生虫病杂志 ›› 2018, Vol. 36 ›› Issue (6): 636-642.
收稿日期:
2018-04-25
出版日期:
2018-12-30
发布日期:
2019-01-08
通讯作者:
李学荣
基金资助:
Yun-shan MOU, Lu-jie LI, Yin-juan WU, Xue-rong LI*()
Received:
2018-04-25
Online:
2018-12-30
Published:
2019-01-08
Contact:
Xue-rong LI
Supported by:
摘要:
疟疾是严重威胁人类健康的主要传染病之一。尽管以青蒿素为基础的青蒿素联合疗法(ACT)能有效控制疟疾扩散及降低疟疾死亡率,但近年来不断发现的恶性疟原虫对青蒿素和ACT的耐药性引起了广泛的关注。通过回顾相关文献,本文综述了恶性疟原虫多药耐药性基因(Pfmdr1)、恶性疟原虫氯喹耐药性转运蛋白基因(Pfcrt)、恶性疟原虫钙ATP蛋白6基因(Pfatp6)和恶性疟原虫K13基因(Pfkelch13)及其他青蒿素耐药性机制的研究,为进一步探索疟原虫青蒿素耐药分子机制和监控耐药疟原虫的扩散提供参考。
中图分类号:
牟畇珊, 李璐杰, 吴银娟, 李学荣. 疟原虫青蒿素耐药分子机制探索[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 636-642.
Yun-shan MOU, Lu-jie LI, Yin-juan WU, Xue-rong LI. Exploration of molecular mechanisms of artemisinin resistance in malaria parasites[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2018, 36(6): 636-642.
[1] | World Health Organization.World malaria report 2017[R]. Geneva: WHO, 2017. |
[2] | Udomsangpetch R, Pipitaporn B, Krishna S, et al. Antimalarial drugs reduce cytoadherence and rosetting Plasmodium falciparum[J]. J Infect Dis, 1996, 173(3): 691-698. |
[3] | ter Kuile F, White NJ, Holloway P, et al. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria[J]. Exp Parasitol, 1993, 76(1): 85-95. |
[4] | Haldar K, Bhattacharjee S, Safeukui I.Drug resistance in Plasmodium[J]. Nat Rev Microbiol, 2018, 16(3): 156-170. |
[5] | Enserink M.Malaria’s drug miracle in danger[J]. Science, 2010, 328(5980): 844-846. |
[6] | Bhattarai A, Ali AS, Kachur SP, et al. Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar[J]. PLoS Med, 2007, 4(11): e309. |
[7] | Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2009, 361(5): 455-467. |
[8] | Amaratunga C, Sreng S, Suon S, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study[J]. Lancet Infect Dis, 2012, 12(11): 851-858. |
[9] | Phyo AP, Nkhoma S, Stepniewska K, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study[J]. Lancet, 2012, 379(9830): 1960-1966. |
[10] | Tun KM, Imwong M, Lwin KM, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker[J]. Lancet Infect Dis, 2015, 15(4): 415-421. |
[11] | Imwong M, Jindakhad T, Kunasol C, et al. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand[J]. Sci Reps, 2015, 5: 17412. |
[12] | Lu F, Culleton R, Zhang M, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa[J]. N Engl J Med, 2017, 376(10): 991-993. |
[13] | Dhingra V, Vishweshwar Rao K, Lakshmi Narasu M.Current status of artemisinin and its derivatives as antimalarial drugs[J]. Life Sci, 2000, 66(4): 279-300. |
[14] | Umar RA, Hassan SW, Ladan MJ, et al. The association of K76T mutation in Pfcrt gene and chloroquine treatment failure in uncomplicated Plasmodium falciparum malaria in a cohort of Nigerian children[J]. J Appl Sci, 2007, 7(23): 3696-3704. |
[15] | Nsobya SL, Dokomajilar C, Joloba M, et al. Resistance-mediating Plasmodium falciparum Pfcrt and Pfmdr1 alleles after treatment with artesunate-amodiaquine in Uganda[J]. Antimicrob Agents Chemother, 2007, 51(8): 3023-3025. |
[16] | Holmgren G, Hamrin J, Svärd J, et al. Selection of Pfmdr1 mutations after amodiaquine monotherapy and amodiaquine plus artemisinin combination therapy in East Africa[J]. Infect Genet Evol, 2007, 7(5): 562-569. |
[17] | Henriques G, Hallett RL, Beshir KB, et al. Directional selection at the Pfmdr1, Pfcrt, Pfubp1, and Pfap2mu loci of Plasmodium falciparum in Kenyan children treated with ACT[J]. J Infect Dis, 2014, 210(12): 2001-2008. |
[18] | Price RN, Cassar C, Brockman A, et al. The Pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand[J]. Antimicrob Agents Chemother, 1999, 43(12): 2943-2949. |
[19] | Chavchich M, Gerena L, Peters J, et al. Role of Pfmdr1 amplification and expression in induction of resistance to artemisinin derivatives in Plasmodium falciparum[J]. Antimicrob Agents Chemother, 2010, 54(6): 2455-2464. |
[20] | Price RN, Uhlemann AC, Brockman A, et al. Mefloquine resistance in Plasmodium falciparum and increased Pfmdr1 gene copy number[J]. Lancet, 2004, 364(9432): 438-447. |
[21] | Ibraheem ZO, Abd Majid R, Noor SM, et al. Role of different Pfcrt and Pfmdr-1 mutations in conferring resistance to antimalaria drugs in Plasmodium falciparum[J]. Malar Res Treat, 2014, 2014: 950424. |
[22] | Njokah MJ,Kang'ethe JN, Kinyua J, et al. In vitro selection of Plasmodium falciparum Pfcrt and Pfmdr1 variants by artemisinin[J]. Malar J, 2016, 15(1): 381. |
[23] | Sanchez CP, Mayer S, Nurhasanah A, et al. Genetic linkage analyses redefine the roles of PfCRT and PfMDR1 in drug accumulation and susceptibility in Plasmodium falciparum[J]. Mol Microbiol, 2011, 82(4): 865-878. |
[24] | Eckstein-Ludwig U, Webb RJ, Van Goethem ID, et al. Artemisinins target the SERCA of Plasmodium falciparum[J]. Nature, 2003, 424(6951): 957-961. |
[25] | Toyoshima C, Nomura H.Structural changes in the calcium pump accompanying the dissociation of calcium[J]. Nature, 2002, 418(6898): 605-611. |
[26] | N N, C GPD, Chakraborty C, et al. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: an integrated computational approach[J]. Scientific Reports, 2016, 6: 30106. |
[27] | Uhlemann AC, Cameron A, Eckstein-Ludwig U, et al. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins[J]. Nat Struct Mol Biol, 2005, 12(7): 628-629. |
[28] | Jambou R, Martinelli A, Pinto J, et al. Geographic structuring of the Plasmodium falciparum sarco(endo) plasmic reticulum Ca2+ ATPase (PfSERCA) gene diversity[J]. PLoS One, 2010, 5(2): e9424. |
[29] | Cui L, Wang Z, Jiang H, et al. Lack of association of the S769N mutation in Plasmodium falciparum SERCA (PfATP6) with resistance to artemisinins[J]. Antimicrob Agents Chemother, 2012, 56(5): 2546-2552. |
[30] | Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2013, 505(7481): 50-55. |
[31] | Straimer J, Gnädig NF, Witkowski B, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates[J]. Science, 2015, 347(6220): 428-431. |
[32] | World Health Organization.Guidelines for the Treatment of Malaria[M]. 3rd ed. Gevena: WHO, 2015. |
[33] | Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain[J]. Genes Dev, 1999, 13(1): 76-86. |
[34] | Zhang DD, Hannink M.Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress[J]. Mol Cell Biol, 2003, 23(22): 8137-8151. |
[35] | Tilley L, Straimer J, Gnadig NF, et al. Artemisinin action and resistance in Plasmodium falciparum[J]. Trends Parasitol, 2016, 32(9): 682-696. |
[36] | Efferth T, Marschall M, Wang X, et al. Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses[J]. J Mol Med, 2002, 80(4): 233-242. |
[37] | Cheng C, Ho WE, Goh FY, et al. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway[J]. PLoS One, 2011, 6(6): e20932. |
[38] | Bhattacharjee S, Stahelin RV, Speicher KD, et al. Endoplasmic reticulum PI(3)P lipid binding targets malaria proteins to the host cell[J]. Cell, 2012, 148(1/2): 201-212. |
[39] | Mbengue A, Bhattacharjee S, Pandharkar T, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria[J]. Nature, 2015, 520(7549): 683-687. |
[40] | Müller S.Role and regulation of glutathione metabolism in Plasmodium falciparum[J]. Molecules, 2015, 20(6): 10511-10534. |
[41] | Ittarat W, Sreepian A, Srisarin A, et al. Effect of dihydroartemisinin on the antioxidant capacity of P. falciparum-infected erythrocytes[J]. Southeast Asian J Trop Med Public Health, 2003, 34(4): 744-750. |
[42] | Phompradit P, Chaijaroenkul W, Na-Bangchang K.Cellular mechanisms of action and resistance of Plasmodium falciparum to artemisinin[J]. Parasitol Res, 2017, 116(12): 3331-3339. |
[43] | Fairhurst RM, Dondorp AM.Artemisinin-resistant Plasmodium falciparum malaria[J]. Microbiol Spectr, 2016, 4(3): EI10-0013-2016. |
[44] | Chandra R, Tripathi LM, Saxena JK, et al. Implication of intracellular glutathione and its related enzymes on resistance of malaria parasites to the antimalarial drug arteether[J]. Parasitol Int, 2011, 60(1): 97-100. |
[45] | Siddiqui G, Srivastava A, Russell AS, et al. Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin-resistant Plasmodium falciparum[J]. J Infect Dis, 2017, 215(9): 1435-1444. |
[46] | Witkowski B, Lelièvre J, Nicolau-Travers ML, et al. Evidence for the contribution of the hemozoin synthesis pathway of the murine Plasmodium yoelii to the resistance to artemisinin-related drugs[J]. PLoS One, 2012, 7(3): e32620. |
[47] | 姚美雪, 王恒. 疟色素在疟原虫检测方面的应用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(1): 68-71. |
[48] | Meshnick SR, Thomas A, Ranz A, et al. Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action[J]. Mol Biochem Parasitol, 1991, 49(2): 181-189. |
[49] | Ron D, Walter P.Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol, 2007, 8(7): 519-529. |
[50] | Amm I, Sommer T, Wolf DH.Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system[J]. Biochim Biophys Acta, 2014, 1843(1): 182-196. |
[51] | Dogovski C, Xie SC, Burgio G, et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance[J]. PLoS Biol, 2015, 13(4): e1002132. |
[52] | Mok S, Imwong M, Mackinnon MJ, et al. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription[J]. BMC Genomics, 2011, 12: 391. |
[53] | Cazelles J, Robert A, Meunier B.Alkylation of heme by artemisinin, an antimalarial drug[J]. Comptes Rendus de l′Académie des Sciences-Series IIC-Chemistry, 2001, 4(2): 85-89. |
[54] | Haynes RK, Monti D, Taramelli D, et al. Artemisinin antimalarials do not inhibit hemozoin formation[J]. Antimicrob Agents Chemother, 2003, 47(3): 1175. |
[55] | Cazelles J, Camuzat-Dedenis B, Provot O, et al.ChemInform abstract: alkylating properties of synthetic trioxanes related to artemisinin[J]. ChemInform, 2010, 31(33): 1265-1270. |
[56] | Loup C, Lelièvre J, Benoit-Vical F, et al. Trioxaquines and heme-artemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine[J]. Antimicrob Agents Chemother, 2007, 51(10): 3768-3770. |
[57] | Karmodiya K, Pradhan S J, Joshi B, et al. A comprehensive epigenome map of Plasmodium falciparum reveals unique mechanisms of transcriptional regulation and identifies H3K36me2 as a global mark of gene suppression[J]. Epigenet Chromatin, 2015, 8(1): 32-49. |
[58] | Ay F, Bunnik EM, Varoquaux N, et al. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression[J]. Genome Res, 2014, 24(6): 974-988. |
[59] | Ponts N, Fu L, Harris E, et al. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum[J]. Cell Host Microbe, 2013, 14(6): 696-706. |
[60] | Ginsburg H, Kutner S, Krugliak M, et al. Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells[J]. Mol Biochem Parasitol, 1985, 14(3): 313-322. |
[61] | Comeaux CA, Coleman BI, Bei AK, et al. Functional analysis of epigenetic regulation of tandem RhopH1/clag genes reveals a role in Plasmodium falciparum growth[J]. Mol Microbiol, 2011, 80(2): 378-390. |
[62] | Mohan R.Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration[J]. J Biol Chem, 2002, 277(3): 2065-2072. |
[63] | Mira-Martínez S, Rovira-Graells N, Crowley VM, et al. Epigenetic switches in clag3 genes mediate blasticidin S resistance in malaria parasites[J]. Cell Microbiol, 2013, 15(11): 1913-1923. |
[64] | Basore K, Cheng Y, Kushwaha AK, et al. How do antimalarial drugs reach their intracellular targets[J]. Front Pharmacol, 2015, 6: 91. |
[65] | 田一妮, 叶润, 潘卫庆, 等. 恶性疟原虫药物抗性相关基因筛选与鉴定方法[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(5): 495-498. |
[66] | Wang Z, Cabrera M, Yang J, et al. Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border[J]. Sci Rep, 2016, 6:33891. |
[67] | Mohanty S.Guidelines for the treatment of malaria[M]. Geneva: World Health Organization, 2006. |
[68] | 张丽, 丰俊, 张少森, 等. 2017年全国消除疟疾进展及疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3):201-209. |
[1] | 王蓉, 徐洁, 朱晓彤. 疟原虫有性生殖传播阻断疫苗的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 399-406. |
[2] | 杨和仙, 黄东升, 聂凡刚. 云南省保山市2023年疟疾疫情及防控措施分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 418-420. |
[3] | 张丽, 夏志贵. 2023年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 135-139. |
[4] | 许艳, 王龙江, 孔祥礼, 李曰进, 卜灿灿, 闫歌, 张本光, 王用斌. 2017—2022年山东省输入性疟疾流行病学特征[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 140-146. |
[5] | 文静, 郭明权, 张蓓, 张腾飞, 潘帅, 孙丹凤, 戚伟强. 2012—2022年上海市公共卫生临床中心输入性疟疾病例流行病学分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 147-152. |
[6] | 燕贺, 黄芳, 丰俊, 尹建海, 夏志贵, 曹建平. 2010—2018年云南中缅边境地区恶性疟原虫抗磺胺多辛-乙胺嘧啶药物基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 153-159. |
[7] | 易佳, 吴冬妮, 董小蓉, 朱红, 林文, 张聪, 孙凌聪. 湖北省消除疟疾前后输入性疟疾实验室检测能力分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 177-181. |
[8] | 严信留, 杜尊伟, 杨亚明, 汪丽波, 吴方伟, 李奔福, 李鸿斌, 陈然, 字金荣, 彭佳, 蔡璇, 保雪莹, 唐小英, 杨恒林. 单次和双次阿苯达唑治疗土源性线虫感染的疗效观察[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 204-210. |
[9] | 何伊莎, 谢朝勇, 王毓, 李燕菁. 南京市新型冠状病毒感染疫情暴发前后输入性疟疾流行特征及病例诊断分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 267-271. |
[10] | 朱民, 张浩, 吴立明, 张宸罡, 张耀光, 王真瑜, 陈健, 吴寰宇, 陈昕. 上海市消除疟疾后输入性疟疾监测响应系统实施与成效分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 91-97. |
[11] | 李春燕, 张福艳, 史鹏, 田丰源. 2011—2023年四川省自贡市输入性疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 129-133. |
[12] | 杨硕, 夏尚, 闫书宁, 薛靖波, 史本云, 郝瑜婉, 李梦茹, 梁家瑞, 夏志贵, 郑彬. 基于国际贸易关系的我国输入性疟疾风险来源分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 744-748. |
[13] | 龚艳凤, 李紫芬, 唐乖, 黄美琴, 周炳华, 胡强. 2015—2022年江西省疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 586-592. |
[14] | 周瑞敏, 纪鹏慧, 李素华, 杨成运, 刘颖, 钱丹, 邓艳, 鲁德领, 赵玉玲, 赵东阳, 张红卫. 河南省自赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 593-600. |
[15] | 魏鸾葶, 李润泽, 关良超, 张骞宇, 李成, 曹雅明, 赵艳. 抗疟药研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 486-491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||