中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (6): 836-841.doi: 10.12140/j.issn.1000-7423.2021.06.017
收稿日期:
2021-04-15
修回日期:
2021-05-27
出版日期:
2021-12-30
发布日期:
2021-11-19
通讯作者:
夏志贵
作者简介:
崔延雯(1996-),女,硕士研究生,从事疟疾血清流行病学研究。E-mail: 505237995@qq.com
基金资助:
CUI Yan-wen(), HUANG Fang, YIN Jian-hai, XIA Zhi-gui*(
)
Received:
2021-04-15
Revised:
2021-05-27
Online:
2021-12-30
Published:
2021-11-19
Contact:
XIA Zhi-gui
Supported by:
摘要:
准确的监测数据对开展疟疾控制、消除和消除后防止再传播工作至关重要。近年来高灵敏度的血清学监测方法不断发展和优化,特别是基于磁珠和蛋白质芯片的多重免疫分析技术,使得评估低流行区疟疾暴露风险、分析暴露的相关因素和空间异质性等成为可能。本文综述了血清学监测方法在疟疾控制与消除中的研究和应用进展,以为疟疾消除和消除后监测提供更适合的方法学工具。
中图分类号:
崔延雯, 黄芳, 尹建海, 夏志贵. 疟疾控制与消除中血清学监测方法的研究与应用进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 836-841.
CUI Yan-wen, HUANG Fang, YIN Jian-hai, XIA Zhi-gui. Research and application progress of sero-surveillance methods in malaria control and elimination[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(6): 836-841.
表1
疟疾血清学监测方法常用重组抗原的性质与应用
抗原名称 | 虫种 | 位置 | 特点 | 应用 |
---|---|---|---|---|
裂殖子顶端膜抗原1 | 间日疟原虫/恶性疟原虫 | 裂殖子 | 高免疫原性,抗体半衰期长 | 反映低流行区累积暴露和近期暴露 |
裂殖子表面蛋白-119 | 间日疟原虫/恶性疟原虫 | 裂殖子 | 交叉反应性低,抗体半衰期长 | 反映低流行区累积暴露和近期暴露 |
环子孢子蛋白 | 间日疟原虫/恶性疟原虫 | 子孢子 | 红细胞期抗体含量低 | 反映频繁或近期暴露 |
谷氨酸富集蛋白R0 | 恶性疟原虫 | 裂殖子 | 敏感性和特异性高 | 反映累积暴露 |
肝期抗原1 | 恶性疟原虫 | 感染的肝细胞 | 红细胞期抗体含量低 | 反映频繁或近期暴露 |
早期转录膜蛋白5 | 恶性疟原虫 | 红细胞表面 | 敏感性和特异性高 | 反映近期暴露 |
网状细胞结合蛋白2b | 间日疟原虫 | 顶端膜 | 敏感性和特异性高 | 反映近期暴露 |
红细胞结合蛋白Ⅱ | 间日疟原虫 | 顶端膜 | 敏感性和特异性高 | 反映近期暴露 |
[1] | WHO. World malaria report 2021 [R]. Geneva: WHO, 2021. |
[2] |
Kerkhof K, Canier L, Kim S, et al. Implementation and application of a multiplex assay to detect malaria-specific antibodies: a promising tool for assessing malaria transmission in Southeast Asian pre-elimination areas[J]. Malar J, 2015, 14: 338.
doi: 10.1186/s12936-015-0868-z |
[3] |
Bousema T, Stevenson J, Baidjoe A, et al. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial[J]. Trials, 2013, 14: 36.
doi: 10.1186/1745-6215-14-36 pmid: 23374910 |
[4] |
Cook J, Speybroeck N, Sochanta T, et al. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia[J]. Malar J, 2012, 11: 86.
doi: 10.1186/1475-2875-11-86 |
[5] | Jiang L, Wang ZY, Zhang YG, et al. Analysis on the application of three methods for malaria diagnosis[J]. Chin J Parasitol Parasit Dis, 2017, 35(1): 53-58. (in Chinese) |
(江莉, 王真瑜, 张耀光, 等. 3种疟疾检测方法的应用分析[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(1): 53-58.) | |
[6] |
Greenhouse B, Smith DL, Rodríguez-Barraquer I, et al. Taking sharper pictures of malaria with CAMERAs: combined antibodies to measure exposure recency assays[J]. Am J Trop Med Hyg, 2018, 99(5): 1120-1127.
doi: 10.4269/ajtmh.18-0303 |
[7] | Tang LY, Zhou YC, Bai XR, et al. Application of IFAT in seroepidemiological surveillance of malaria[J]. Chin Trop Med, 2001, 1(2): 155-157. (in Chinese) |
(唐来仪, 周月婵, 白晓蓉, 等. 间接荧光抗体试验在疟疾血清流行病学监测中的应用[J]. 中国热带医学, 2001, 1(2): 155-157.) | |
[8] | Dong XR, Huang GQ, Lin W, et al. Surveillance of malaria based on indirect fluorescent antibody test in Hubei, 2006—2010[J]. J Prev Med Inf, 2014, 30(12): 984-986. (in Chinese) |
(董小蓉, 黄光全, 林文, 等. 2006—2010年湖北省疟疾间接荧光抗体监测分析[J]. 预防医学情报杂志, 2014, 30(12): 984-986.) | |
[9] | She RC, Rawlins ML, Mohl R, et al. Comparison of immunofluorescence antibody testing and two enzyme immunoassays in the serologic diagnosis of malaria[J]. Travel Med, 2007, 14(2): 105-111. |
[10] |
Drakeley CJ, Corran PH, Coleman PG, et al. Estimating medium-and long-term trends in malaria transmission by using serological markers of malaria exposure[J]. Proc Nalt Acad Sci USA, 2005, 102(14): 5108-5113.
doi: 10.1073/pnas.0408725102 |
[11] | Guo HF. A new method to detect antibodies based on immunomagnetic beads that can be used repeatedly and the primary frame of the micro-hydromagnet proteinic-chip that can be used repeatedly[D]. Xi’an: The Fourth Military Medical University, 2006. (in Chinese) |
(郭慧芳. 基于可重复使用免疫磁珠的抗体检测方法建立及可重复使用磁性微流体蛋白芯片初步设计[D]. 西安: 第四军医大学, 2006.) | |
[12] | Zhang X, Chen YJ, Cheng M, et al. Advance in the immunological detection technologies research of serum protein biomarkers[J]. Chin Med Her, 2019, 16(36): 24-28, 36. (in Chinese) |
(张雪, 陈艳焦, 程觅, 等. 血清蛋白生物标志物免疫学测定技术研究进展[J]. 中国医药导报, 2019, 16(36): 24-28, 36.) | |
[13] |
Murungi LM, Kimathi RK, Tuju J, et al. Serological profiling for malaria surveillance using a standard ELISA protocol[J]. Methods Mol Biol, 2019, 2013: 83-90.
doi: 10.1007/978-1-4939-9550-9_6 pmid: 31267495 |
[14] |
van den Hoogen LL, Bareng P, Alves J, et al. Comparison of commercial ELISA kits to confirm the absence of transmission in malaria elimination settings[J]. Front Public Health, 2020, 8: 480.
doi: 10.3389/fpubh.2020.00480 pmid: 33014975 |
[15] |
Breen EC, Reynolds SM, Cox C, et al. Multisite comparison of high-sensitivity multiplex cytokine assays[J]. Clin Vaccine Immunol, 2011, 18(8): 1229-1242.
doi: 10.1128/CVI.05032-11 |
[16] |
Ondigo BN, Park GS, Ayieko C, et al. Comparison of non-magnetic and magnetic beads multiplex assay for assessment of Plasmodium falciparum antibodies[J]. Peer J, 2019, 7: e6120.
doi: 10.7717/peerj.6120 |
[17] | Chen ZB, Wang B, Gu J, et al. Development and verification of a method for multiplex detection of specific human serum IgG antibodies against recombinant Staphylococcus aureus vaccine based on Luminex system[J]. Chin J Biol, 2020, 33(9): 1042-1047, 1053. (in Chinese) |
(陈质斌, 王斌, 顾江, 等. 重组金黄色葡萄球菌疫苗特异性人血清IgG抗体luminex系统多重检测方法的建立及验证[J]. 中国生物制品学杂志, 2020, 33(9): 1042-1047, 1053.) | |
[18] |
Folegatti PM, Siqueira AM, Monteiro WM, et al. A systematic review on malaria sero-epidemiology studies in the Brazilian Amazon: insights into immunological markers for exposure and protection[J]. Malar J, 2017, 16: 107.
doi: 10.1186/s12936-017-1762-7 |
[19] |
Crompton PD, Kayala MA, Traore B, et al. A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray[J]. Proc Nalt Acad Sci USA, 2010, 107(15): 6958-6963.
doi: 10.1073/pnas.1001323107 |
[20] |
Finney OC, Danziger SA, Molina DM, et al. Predicting antidisease immunity using proteome arrays and sera from children naturally exposed to malaria[J]. Mol Cell Proteomics, 2014, 13(10): 2646-2660.
doi: 10.1074/mcp.M113.036632 |
[21] |
Dowall SD, Graham VA, Fletcher T, et al. Use and reliability of multiplex bead-based assays (Luminex) at containment level 4[J]. Methods, 2019, 158: 17-21.
doi: 10.1016/j.ymeth.2019.02.008 |
[22] |
Houser B. Bio-Rad’s Bio-Plex® suspension array system, xMAP technology overview[J]. Arch Physiol Biochem, 2012, 118(4): 192-196.
doi: 10.3109/13813455.2012.705301 pmid: 22852821 |
[23] |
Tighe PJ, Ryder RR, Todd I, et al. ELISA in the multiplex era: potentials and pitfalls[J]. Proteomics Clin Appl, 2015, 9(3/4): 406-422.
doi: 10.1002/prca.v9.3-4 |
[24] |
Priest JW, Jenks MH, Moss DM, et al. Integration of multiplex bead assays for parasitic diseases into a national, population-based serosurvey of women 15-39 years of age in Cambodia[J]. PLoS Negl Trop Dis, 2016, 10(5): e0004699.
doi: 10.1371/journal.pntd.0004699 |
[25] |
Kerkhof K, Sluydts V, Willen L, et al. Serological markers to measure recent changes in malaria at population level in Cambodia[J]. Malar J, 2016, 15: 529.
doi: 10.1186/s12936-016-1576-z |
[26] |
Proietti C, Verra F, Bretscher MT, et al. Influence of infection on malaria-specific antibody dynamics in a cohort exposed to intense malaria transmission in northern Uganda[J]. Parasite Immunol, 2013, 35(5/6): 164-173.
doi: 10.1111/pim.2013.35.issue-5pt6 |
[27] |
van den Hoogen LL, Présumé J, Romilus I, et al. Quality control of multiplex antibody detection in samples from large-scale surveys: the example of malaria in Haiti[J]. Sci Rep, 2020, 10: 1135.
doi: 10.1038/s41598-020-57876-0 pmid: 31980693 |
[28] |
Varela ML, Mbengue B, Basse A, et al. Optimization of a magnetic bead-based assay (MAGPIX^®-Luminex) for immune surveillance of exposure to malaria using multiple Plasmodium antigens and sera from different endemic settings[J]. Malar J, 2018, 17: 1-9.
doi: 10.1186/s12936-017-2149-5 |
[29] | Wang W. CD20/486 ssDNA aptamers screening by SELEX and its application in tumor markers protein microarray construction[D]. Guangzhou: Southern Medical University, 2019. (in Chinese) |
(王伟. 蛋白质芯片在肿瘤标志物筛查中的应用以及利用SELEX技术筛选CD20/486的ssDNA适配体的研究[D]. 广州: 南方医科大学, 2019.) | |
[30] | Fulton KM, Twine SM. Immunoproteomics: current technology and applications[J]. Methods Mol Biol, 2013, 1601: 21-57. |
[31] |
Sundaresh S, Doolan DL, Hirst S, et al. Identification of humoral immune responses in protein microarrays using DNA microarray data analysis techniques[J]. Bioinformatics, 2006, 22(14): 1760-1766.
pmid: 16644788 |
[32] |
Ondigo BN, Hodges JS, Ireland KF, et al. Estimation of recent and long-term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens[J]. J Infect Dis, 2014, 210(7): 1123-1132.
doi: 10.1093/infdis/jiu225 |
[33] |
Badu K, Afrane YA, Larbi J, et al. Marked variation in MSP-119 antibody responses to malaria in western Kenyan Highlands[J]. BMC Infect Dis, 2012, 12: 50.
doi: 10.1186/1471-2334-12-50 |
[34] |
McCallum FJ, Persson KE, Fowkes FJ, et al. Differing rates of antibody acquisition to merozoite antigens in malaria: implications for immunity and surveillance[J]. J Leukoc Biol, 2017, 101(4): 913-925.
doi: 10.1189/jlb.5MA0716-294R |
[35] |
Mugyenyi CK, Elliott SR, Yap XZ, et al. Declining malaria transmission differentially impacts the maintenance of humoral immunity to Plasmodium falciparum in children[J]. J Infect Dis, 2017, 216(7): 887-898.
doi: 10.1093/infdis/jix370 |
[36] |
van den Hoogen LL, Stresman G, Présumé J, et al. Selection of antibody responses associated with Plasmodium falciparum infections in the context of malaria elimination[J]. Front Immunol, 2020, 11: 928.
doi: 10.3389/fimmu.2020.00928 pmid: 32499783 |
[37] |
Kusi KA, Bosomprah S, Dodoo D, et al. Anti-sporozoite antibodies as alternative markers for malaria transmission intensity estimation[J]. Malar J, 2014, 13: 103.
doi: 10.1186/1475-2875-13-103 |
[38] |
Seck MC, Thwing J, Badiane AS, et al. Analysis of anti-Plasmodium IgG profiles among Fulani nomadic pastoralists in northern Senegal to assess malaria exposure[J]. Malar J, 2020, 19(1): 15.
doi: 10.1186/s12936-020-3114-2 |
[39] |
Idris ZM, Chan CW, Mohammed M, et al. Serological measures to assess the efficacy of malaria control programme on Ambae Island, Vanuatu[J]. Parasit Vectors, 2017, 10(1): 204.
doi: 10.1186/s13071-017-2139-z |
[40] |
Nyunt MH, Soe TN, Shein T, et al. Estimation on local transmission of malaria by serological approach under low transmission setting in Myanmar[J]. Malar J, 2018, 17: 6.
doi: 10.1186/s12936-017-2170-8 |
[41] |
Priest JW, Plucinski MM, Huber CS, et al. Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP119 subunit proteins in multiplexed serologic assays[J]. Malar J, 2018, 17: 417.
doi: 10.1186/s12936-018-2566-0 |
[42] |
Longley RJ, White MT, Takashima E, et al. Development and validation of serological markers for detecting recent Plasmodium vivax infection[J]. Nat Med, 2020, 26(5): 741-749.
doi: 10.1038/s41591-020-0841-4 pmid: 32405064 |
[43] |
Cunha MG, Silva ES, Sepúlveda N, et al. Serologically defined variations in malaria endemicity in Pará State, Brazil[J]. PLoS One, 2014, 9(11): e113357.
doi: 10.1371/journal.pone.0113357 |
[44] |
Dewasurendra RL, Dias JN, Sepulveda N, et al. Effectiveness of a serological tool to predict malaria transmission intensity in an elimination setting[J]. BMC Infect Dis, 2017, 17(1): 49.
doi: 10.1186/s12879-016-2164-0 pmid: 28068925 |
[45] |
Surendra H, Supargiyono, Ahmad RA, et al. Using health facility-based serological surveillance to predict receptive areas at risk of malaria outbreaks in elimination areas[J]. BMC Med, 2020, 18(1): 9.
doi: 10.1186/s12916-019-1482-7 pmid: 31987052 |
[46] |
Kattenberg JH, Erhart A, Truong MH, et al. Characterization of Plasmodium falciparum and Plasmodium vivax recent exposure in an area of significantly decreased transmission intensity in Central Vietnam[J]. Malar J, 2018, 17: 180.
doi: 10.1186/s12936-018-2326-1 |
[47] |
Assefa A, Ali Ahmed A, Deressa W, et al. Multiplex serology demonstrate cumulative prevalence and spatial distribution of malaria in Ethiopia[J]. Malar J, 2019, 18: 246.
doi: 10.1186/s12936-019-2874-z |
[48] |
Helb DA, Tetteh KK, Felgner PL, et al. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities[J]. Proc Nalt Acad Sci USA, 2015, 112(32): E4438-E4447.
doi: 10.1073/pnas.1501705112 |
[49] |
Surendra H, Wijayanti MA, Murhandarwati EH, et al. Analysis of serological data to investigate heterogeneity of malaria transmission: a community-based cross-sectional study in an area conducting elimination in Indonesia[J]. Malar J, 2019, 18: 227.
doi: 10.1186/s12936-019-2866-z |
[50] |
Kerkhof K, Sluydts V, Heng S, et al. Geographical patterns of malaria transmission based on serological markers for falciparum and vivax malaria in Ratanakiri, Cambodia[J]. Malar J, 2016, 15: 510.
doi: 10.1186/s12936-016-1558-1 |
[51] |
Baidjoe AY, Stevenson J, Knight P, et al. Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan Highlands[J]. Malar J, 2016, 15: 307.
doi: 10.1186/s12936-016-1362-y |
[52] |
Cook J, Kleinschmidt I, Schwabe C, et al. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, equatorial Guinea[J]. PLoS One, 2011, 6(9): e25137.
doi: 10.1371/journal.pone.0025137 |
[53] |
Stresman GH, Giorgi E, Baidjoe A, et al. Impact of metric and sample size on determining malaria hotspot boundaries[J]. Sci Rep, 2017, 7: 45849.
doi: 10.1038/srep45849 pmid: 28401903 |
[54] |
Biggs J, Raman J, Cook J, et al. Serology reveals heterogeneity of Plasmodium falciparum transmission in northeastern South Africa: implications for malaria elimination[J]. Malar J, 2017, 16: 48.
doi: 10.1186/s12936-017-1701-7 |
[55] |
malERA Consultative Group on Monitoring, Evaluation, and Surveillance. A research agenda for malaria eradication: monitoring, evaluation, and surveillance[J]. PLoS Med, 2011, 8(1): e1000400.
doi: 10.1371/journal.pmed.1000400 |
[56] |
Stewart L, Gosling R, Griffin J, et al. Rapid assessment of malaria transmission using age-specific sero-conversion rates[J]. PLoS One, 2009, 4(6): e6083.
doi: 10.1371/journal.pone.0006083 |
[57] | Elliott SR, Fowkes FJ, Richards JS, et al. Research priorities for the development and implementation of serological tools for malaria surveillance[J]. F1000Prime Rep, 2014, 6: 100. |
[1] | 龚艳凤, 李紫芬, 唐乖, 黄美琴, 周炳华, 胡强. 2015—2022年江西省疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 586-592. |
[2] | 王威, 蔡辉霞. 2020年青海省棘球蚴病监测结果[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 319-324. |
[3] | 张米禛, 黄继磊, 朱慧慧, 周长海, 诸廷俊, 钱门宝, 陈颖丹, 李石柱. 2020年全国人体土源性线虫感染情况分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 331-335. |
[4] | 耿燕, 兰子尧, 李杨, 戴佳芮, 蔡姗, 卢丽丹, 黄雨婷, 师伟芳, 佘丹娅. 2017—2021年贵州省疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 384-388. |
[5] | 张丽, 易博禹, 尹建海, 夏志贵. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 137-141. |
[6] | 陈朱云, 欧阳榕, 肖丽贞, 林耀莹, 谢汉国, 张山鹰. 福建省疟疾消除后基层监测响应系统现况分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 170-175. |
[7] | 陈志辉, 洪劲, 张荣兵, 杨倩, 叶青, 李建荣, 田荣. 2006—2021年昆明市疟疾流行特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 233-237. |
[8] | 刘建成, 许艳, 王龙江, 孔祥礼, 王用斌, 李曰进. 2015—2021年山东省临沂市输入性疟疾疫情监测分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 249-252. |
[9] | 操治国, 汪天平, 金伟, 郭见多, 朱磊, 刘道华, 汪敏, 李启扬, 呼明闯. “十三五”期间安徽省人群土源性线虫感染监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 44-51. |
[10] | 陈喆, 葛军, 姜唯声, 邱婷婷, 温琪, 曾小军. 2015—2021年江西省人群土源性线虫感染流行趋势分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 59-67. |
[11] | 张耀光, 江莉, 王真瑜, 朱民, 朱倩, 马晓疆, 余晴, 陈健. 2020—2021年上海市7例输入性疟疾病例误判原因分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 68-74. |
[12] | 王晨曦, 陈福民, 修乐山, 胡沁沁, 周晓农, 郭晓奎, 殷堃. 基于全健康理念的气候变化下人兽共患病风险监测预警体系[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 691-700. |
[13] | 倪碧娴, 徐祥珍, 金小林, 丁昕, 张强, 茅范贞, 戴洋. 2017—2021年江苏省土源性线虫感染情况监测分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 730-736. |
[14] | 张静宵, 史可梅, 刘玉芳, 赵存哲, 詹培珍, 王威, 刘佳, 刘娜, 雷雯, 张青, 张雄英, 马霄, 蔡辉霞, 马俊英. 2016—2020年青海省监测人群土源性线虫感染情况[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 737-741. |
[15] | 蒋甜甜, 纪鹏慧, 贺志权, 陈伟奇, 张雅兰, 邓艳, 王丹, 周瑞敏, 刘颖, 张红卫. 2016—2020年河南省土源性线虫感染监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 742-747. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||