[1] | Banerjee S, Resch Y, Chen KW, et al. Der p 11 is a major allergen for house dust mite-allergic patients suffering from atopic dermatitis[J]. J Invest Dermatol, 2015,135(1):102-109. | [2] | He XM, Shao C, Wei QY. Progress in sensitized protein components and subcutaneous specific immunotherapy for dust mites[J]. Int J Pediatrics, 2019(3):198-202. (in Chinese) | [2] | ( 何雪梅, 邵婵, 魏庆宇. 尘螨致敏蛋白组份及其皮下特异性免疫治疗的研究进展[J]. 国际儿科学杂志, 2019,46(3):198-202.) | [3] | Li J, Sun B, Huang Y, et al. A multicentre study assessing the prevalence of sensitizations in patients with asthma and/or rhinitis in China[J]. Allergy, 2009,64(7):1083-1092. | [4] | Hui Y, Li L, Qian J, et al. Efficacy analysis of three-year subcutaneous SQ-standardized specific immunotherapy in house dust mite-allergic children with asthma[J]. Exp Ther Med, 2014,7(3):630-634. | [5] | Yagami T, Haishima Y, Tsuchiya T, et al. Proteomic analysis of putative latex allergens[J]. Int Arch Allergy Immunol, 2004,135(1):3-11. | [6] | Chan TF, Ji KM, Yim AK, et al. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens[J]. J Allergy Clin Immunol, 2015,135(2):539-548. | [7] | Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes[J]. Bioinformatics, 2007,23(9):1061-1067. | [8] | Randall TA, Mullikin JC, Mueller GA. The draft genome assembly of Dermatophagoides pteronyssinus supports identification of novel allergen isoforms in Dermatophagoides species[J]. Int Arch Allergy Immunol, 2018,175(3):136-146. | [9] | Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data[J]. Genomics, 2010,95(6):315-327. | [10] | Rider SD Jr, Morgan MS, Arlian LG. Allergen homologs in the Euroglyphus maynei draft genome[J]. PLoS One, 2017,12(8):e0183535. | [11] | Waldron R, McGowan J, Gordon N, et al. Draft genome sequence of Dermatophagoides pteronyssinus, the European house dust mite[J]. Genome Announc, 2017,5(32):e00789-e00717. | [12] | Rider SD Jr, Morgan MS, Arlian LG. Draft genome of the Scabies mite[J]. Parasit Vectors, 2015,8:585. | [13] | Liu XY, Yang KY, Wang MQ, et al. High-quality assembly of Dermatophagoides pteronyssinus genome and transcriptome reveals a wide range of novel allergens[J]. J Allergy Clin Immunol, 2018,141(6):2268-2271. | [14] | Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Res, 2017,27(5):722-736. | [15] | Cui Y, Yu L, Teng F, et al. Transcriptomic/proteomic identification of allergens in the mite Tyrophagus putrescentiae[J]. Allergy, 2016,71(11):1635-1639. | [16] | Bordas-Le Floch V, Le Mignon M, Bussières L, et al. A combined transcriptome and proteome analysis extends the allergome of house dust mite Dermatophagoides species[J]. PLoS One, 2017,12(10):e0185830. | [17] | Zhou Y, Li L, Qian J, et al. Identification of three aquaporin subgroups from Blomia tropicalis by transcriptomics[J]. Int J Mol Med, 2018,42(6):3551-3561. | [18] | Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis[J]. Nat Protoc, 2013,8(8):1494-1512. | [19] | Zhao QP, Jiang MS. Proteomics and its application in parasitology[J]. Chin J Parasitol Parasit Dis, 2006,24(2):136-139. (in Chinese) | [19] | ( 赵琴平, 蒋明森. 蛋白质组学及其在寄生虫学研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2006,24(2):136-139.) | [20] | He DG. Proteomics and its application in parasitology[J]. Chin Trop Med, 2003,3(4):507-512. (in Chinese) | [20] | ( 何东苟. 蛋白质组学研究及其在寄生虫学上的应用[J]. 中国热带医学, 2003,3(4):507-512.) | [21] | An S, Chen LL, Long CB, et al. Dermatophagoides farinae allergens diversity identification by proteomics[J]. Mol Cell Proteomics, 2013,12(7):1818-1828. | [22] | Choopong J, Reamtong O, Sookrung N, et al. Proteome, allergenome, and novel allergens of house dust mite, Dermatophagoides farinae[J]. J Proteome Res, 2016,15(2):422-430. | [23] | Kim JY, Yi MH, Hwang Y, et al. 16S rRNA profiling of the Dermatophagoides farinae core microbiome: Enterococcus and Bartonella[J]. Clin Exp Allergy, 2018,48(5):607-610. | [24] | Hubert J, Kopecky J, Perotti MA, et al. Detection and identification of species-specific bacteria associated with synanthropic mites[J]. Microb Ecol, 2012,63(4):919-928. | [25] | Kopecky J, Perotti MA, Nesvorna M, et al. Cardinium endosymbionts are widespread in synanthropic mite species (Acari: Astigmata)[J]. J Invertebr Pathol, 2013,112(1):20-23. | [26] | Santos-Garcia D, Rollat-Farnier PA, Beitia F, et al. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisiatabaci[J]. Genome Biol Evol, 2014,6(4):1013-1030. | [27] | Penz T, Schmitz-Esser S, Kelly SE, et al. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in cardinium hertigii[J]. PLoS Genet, 2012,8(10):e1003012. | [28] | Hubert J, Nesvorna M, Kopecky J, et al. Population and culture age influence the microbiome profiles of house dust mites[J]. Microb Ecol, 2019,77(4):1048-1066. | [29] | Valerio CR, Murray P, Arlian LG, et al. Bacterial 16S ribosomal DNA in house dust mite cultures[J]. J Allergy Clin Immunol, 2005,116(6):1296-1300. | [30] | Erban T, Ledvinka O, Nesvorna M, et al. Experimental manipulation shows a greater influence of population than dietary perturbation on the microbiome of Tyrophagus putrescentiae[J]. Appl Environ Microbiol, 2017,83(9):e00128-e00117. |
|