中国寄生虫学与寄生虫病杂志 ›› 2022, Vol. 40 ›› Issue (6): 786-791.doi: 10.12140/j.issn.1000-7423.2022.06.015
赵卉1(), 向征1, 周隆参2, 潘茂华2, 杨照青1(
)
收稿日期:
2022-04-22
修回日期:
2022-10-10
出版日期:
2022-12-30
发布日期:
2022-12-21
通讯作者:
杨照青
作者简介:
赵卉(1996-),女,博士研究生,从事疟原虫抗药性研究。E-mail: 18435226968@163.com
基金资助:
ZHAO Hui1(), XIANG Zheng1, ZHOU Long-can2, PAN Mao-hua2, YANG Zhao-qing1(
)
Received:
2022-04-22
Revised:
2022-10-10
Online:
2022-12-30
Published:
2022-12-21
Contact:
YANG Zhao-qing
Supported by:
摘要:
疟疾是由疟原虫引起的严重危及人类生命的传染病。疟疾的治疗及防控主要依赖抗疟药物。阿莫地喹是重要的治疗和预防疟疾的药物,与青蒿素衍生物相配合,在非洲疟疾流行的许多国家用作一线治疗药物。本文对阿莫地喹独特的抗疟活性、抗疟效果、抗药性分子标记和安全性进行了综述。
中图分类号:
赵卉, 向征, 周隆参, 潘茂华, 杨照青. 阿莫地喹作为抗疟药的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 786-791.
ZHAO Hui, XIANG Zheng, ZHOU Long-can, PAN Mao-hua, YANG Zhao-qing. Research progress of amodiaquine as an antimalarial drug[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(6): 786-791.
[1] | World Health Organization. World malaria report 2022[R]. Geneva: WHO, 2022. |
[2] | Wang YN, Zhang YM, Lin YX, et al. Plasmodium falciparum resistance to artemisinin drugs—The latest research progress[J]. Chin J Zoonoses, 2014, 30(2): 195-198. (in Chinese) |
(王颖娜, 张艳梅, 蔺应学, 等. 恶性疟原虫对青蒿素类药物抗药性的最新研究进展[J]. 中国人兽共患病学报, 2014, 30(2): 195-198.) | |
[3] | World Health Organization. Guideline for treatment of malaria,third edition[R]. Geneva: WHO, 2015. |
[4] |
Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western Cambodia[J]. N Engl J Med, 2008, 359(24): 2619-2620.
doi: 10.1056/NEJMc0805011 |
[5] | Yang CJ. A case report of falciparum malaria resistance to artemether[J]. J Pract Parasit Dis, 2000(3): 101. (in Chinese) |
(杨沧江. 1例恶性疟对蒿甲醚抗性报道[J]. 实用寄生虫病杂志, 2000(3): 101.) | |
[6] | Su LG, Wang Y, Jia J. Anti-artemether falciparum malaria in 2 cases[J]. Chin J Parasit Dis Control, 2001(1): 66. (in Chinese) |
(苏林光, 王英, 贾杰. 抗蒿甲醚恶性疟2例[J]. 中国寄生虫病防治杂志, 2001(1): 66.) | |
[7] | Yang HL, Liu DQ, Huang KG, et al. In vitro sensitivity of Plasmodium falciparum to derivativesof artemisinin, pyronaridine and chloroquine in Yunnan[J]. Chin J Parasitol Parasit Dis, 1997, 15(5): 292-296. (in Chinese) |
(杨恒林, 刘德全, 黄开国, 董莹, 杨品芳, 杨亚明, 廖明铮, 张春勇, 刘瑞君. 云南省恶性疟原虫对青蒿素类药物及咯萘啶与氯喹敏感性的体外测定[J]. 中国寄生虫学与寄生虫病杂志, 1997, 15(5): 292-296.) | |
[8] |
Webster HK, Boudreau EF, Pavanand K, et al. Antimalarial drug susceptibility testing of Plasmodium falciparum in Thailand using a microdilution radioisotope method[J]. Am J Trop Med Hyg, 1985, 34(2): 228-235.
pmid: 3885770 |
[9] |
Denis MB, Tsuyuoka R, Lim P, et al. Efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia[J]. Trop Med Int Health. 2006, 11(12):1800-1807.
pmid: 17176344 |
[10] |
Tun KM, Jeeyapant A, Imwong M, et al. Parasite clearance rates in Upper Myanmar indicate a distinctive artemisinin resistance phenotype: a therapeutic efficacy study[J]. Malar J, 2016, 15: 185.
doi: 10.1186/s12936-016-1240-7 |
[11] |
Rueangweerayut R, Phyo AP, Uthaisin C, et al. Pyronaridine-artesunate versus mefloquine plus artesunate for malaria[J]. N Engl J Med, 2012, 366(14): 1298-1309.
doi: 10.1056/NEJMoa1007125 |
[12] | Zhang YM. Research status of drug resistance genes of Plasmodium falciparum[J]. Occup Health, 2020, 36(14): 2001-2003, 2007. (in Chinese) |
(张咏梅. 恶性疟原虫抗药性基因研究现状[J]. 职业与健康, 2020, 36(14): 2001-2003, 2007.) | |
[13] | World Health Organization. Methods for surveillance of antimalarial drug efficacy[R]. Geneva: WHO, 2009. |
[14] | World Health Organization. Methods and techniques for clinical trials on antimalarial drug efficacy: genotyping to identify parasite populations[R]. Geneva: WHO, 2007. |
[15] |
Zwang J, Olliaro P, Barennes H, et al. Efficacy of artesunate-amodiaquine for treating uncomplicated falciparum malaria in sub-Saharan Africa: a multi-centre analysis[J]. Malar J, 2009, 8: 203.
doi: 10.1186/1475-2875-8-203 |
[16] |
Ngasala BE, Malmberg M, Carlsson AM, et al. Effectiveness of artemether-lumefantrine provided by community health workers in under-five children with uncomplicated malaria in rural Tanzania: an open label prospective study[J]. Malar J, 2011, 10: 64.
doi: 10.1186/1475-2875-10-64 |
[17] |
Mwesigwa J, Parikh S, McGee B, et al. Pharmacokinetics of artemether-lumefantrine and artesunate-amodiaquine in children in Kampala, Uganda[J]. Antimicrob Agents Chemother, 2010, 54(1): 52-59.
doi: 10.1128/AAC.00679-09 pmid: 19841149 |
[18] |
Adjei GO, Kristensen K, Goka BQ, et al. Effect of concomitant artesunate administration and cytochrome P4502C8 polymorphisms on the pharmacokinetics of amodiaquine in Ghanaian children with uncomplicated malaria[J]. Antimicrob Agents Chemother, 2008, 52(12): 4400-4406.
doi: 10.1128/AAC.00673-07 pmid: 18779360 |
[19] |
Chotsiri P, White NJ, Tarning J. Pharmacokinetic considerations in seasonal malaria chemoprevention[J]. Trends Parasitol, 2022, 38(8): 673-682.
doi: 10.1016/j.pt.2022.05.003 pmid: 35688778 |
[20] |
Ding J, Coldiron ME, Assao B, et al. Adherence and population pharmacokinetic properties of amodiaquine when used for seasonal malaria chemoprevention in African children[J]. Clin Pharmacol Ther, 2020, 107(5): 1179-1188.
doi: 10.1002/cpt.1707 pmid: 31652336 |
[21] | World Health Organization. World malaria report 2016[R]. Geneva: WHO, 2016. |
[22] |
Grandesso F, Guindo O, Woi Messe L, et al. Efficacy of artesunate-amodiaquine, dihydroartemisinin-piperaquine and artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Maradi, Niger[J]. Malar J, 2018, 17(1): 52.
doi: 10.1186/s12936-018-2200-1 |
[23] | Ibrahim ML, Sadou F, Daou M, et al. Comparison of the therapeutic efficiency and of the tolerance of the artemether-lumefantrine and artesunate-amodiaquine combination in Niger[J]. Mali Med, 2016, 31(1): 1-7. |
[24] |
Ibrahima I. Étude de l’efficacité thérapeutique et de la tolérance de l’artéméther-luméfantrine et de l’artésunate-amodiaquine au Niger[J]. Bull Soc Pathol Exot, 2020, 113(1): 17-23.
doi: 10.3166/bspe-2020-0120 pmid: 32881447 |
[25] |
Riloha Rivas M, Warsame M, Mbá Andeme R, et al. Therapeutic efficacy of artesunate-amodiaquine and artemether-lumefantrine and polymorphism in Plasmodium falciparum kelch13-propeller gene in Equatorial Guinea[J]. Malar J, 2021, 20(1): 1-10.
doi: 10.1186/s12936-020-03550-9 |
[26] |
Dorkenoo AM, Yehadji D, Agbo YM, et al. Therapeutic efficacy trial of artemisinin-based combination therapy for the treatment of uncomplicated malaria and investigation of mutations in k13 propeller domain in Togo, 2012—2013[J]. Malar J, 2016, 15: 331.
doi: 10.1186/s12936-016-1381-8 |
[27] |
Pembet Singana B, Casimiro PN, Matondo Diassivi B, et al. Prevalence of malaria among febrile patients and assessment of efficacy of artemether-lumefantrine and artesunate-amodiaquine for uncomplicated malaria in Dolisie, Republic of the Congo[J]. Malar J, 2022, 21(1): 137.
doi: 10.1186/s12936-022-04143-4 |
[28] |
van den Broek I, Kitz C, Al Attas S, et al. Efficacy of three artemisinin combination therapies for the treatment of uncomplicated Plasmodium falciparum malaria in the Republic of Congo[J]. Malar J, 2006, 5: 113.
doi: 10.1186/1475-2875-5-113 |
[29] |
Ndounga M, Mayengue PI, Casimiro PN, et al. Artesunate-amodiaquine efficacy in Congolese children with acute uncomplicated falciparum malaria in Brazzaville[J]. Malar J, 2013, 12: 53.
doi: 10.1186/1475-2875-12-53 |
[30] |
Ndounga M, Pembe Issamou Mayengue, Casimiro PN, et al. Artesunate-amodiaquine versus artemether-lumefantrine for the treatment of acute uncomplicated malaria in Congolese children under 10 years old living in a suburban area: a randomized study[J]. Malar J, 2015, 14: 423.
doi: 10.1186/s12936-015-0918-6 |
[31] |
Singana BP, Bogreau H, Matondo BD, et al. Malaria burden and anti-malarial drug efficacy in Owando, northern Congo[J]. Malar J, 2016, 15: 16.
doi: 10.1186/s12936-015-1078-4 |
[32] | Dimbu PR, Horth R, Cândido ALM, et al. Continued low efficacy of artemether-lumefantrine in Angola in 2019[J]. Antimicrob Agents Chemother, 2021, 65(2): e01949-e01920. |
[33] |
Msellem M, Morris U, Soe A, et al. Increased sensitivity of Plasmodium falciparum to artesunate/amodiaquine despite 14 years as first-line malaria treatment, Zanzibar[J]. Emerg Infect Dis, 2020, 26(8): 1767-1777.
doi: 10.3201/eid2608.191547 pmid: 32687050 |
[34] |
Beavogui AH, Diawara EY, Cherif MS, et al. Selection of pfcrt 76t and pfmdr1 86y mutant Plasmodium falciparum after treatment of uncomplicated malaria with artesunate-amodiaquine in republic of Guinea[J]. J Parasitol, 2021, 107(5): 778-782.
doi: 10.1645/19-199 pmid: 34581793 |
[35] |
Abuaku B, Duah N, Quaye L, et al. Therapeutic efficacy of artesunate-amodiaquine and artemether-lumefantrine combinations in the treatment of uncomplicated malaria in two ecological zones in Ghana[J]. Malar J, 2016, 15: 6.
doi: 10.1186/s12936-015-1080-x |
[36] |
Diallo MA, Yade MS, Ndiaye YD, et al. Efficacy and safety of artemisinin-based combination therapy and the implications of Pfkelch13 and Pfcoronin molecular markers in treatment failure in Senegal[J]. Sci Rep, 2020, 10: 8907.
doi: 10.1038/s41598-020-65553-5 |
[37] |
Ouldabdallahi M, Alew I, Salem MSOA, et al. Efficacy of artesunate-amodiaquine for the treatment of acute uncomplicated falciparum malaria in southern Mauritania[J]. Malar J, 2014, 13(1): 1-6.
doi: 10.1186/1475-2875-13-1 |
[38] |
Diarra Y, Koné O, Sangaré L, et al. Therapeutic efficacy of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Mali, 2015—2016[J]. Malar J, 2021, 20(1): 1-13.
doi: 10.1186/s12936-020-03550-9 |
[39] |
Lingani M, Bonkian LN, Yerbanga I, et al. In vivo/ex vivo efficacy of artemether-lumefantrine and artesunate-amodiaquine as first-line treatment for uncomplicated falciparum malaria in children: an open label randomized controlled trial in Burkina Faso[J]. Malar J, 2020, 19(1): 1-13.
doi: 10.1186/s12936-019-3075-5 |
[40] |
Smith SJ, Kamara ARY, Sahr F, et al. Efficacy of artemisinin-based combination therapies and prevalence of molecular markers associated with artemisinin, piperaquine and sulfadoxine-pyrimethamine resistance in Sierra Leone[J]. Acta Trop, 2018, 185: 363-370.
doi: S0001-706X(18)30138-4 pmid: 29932931 |
[41] |
Djallé D, Njuimo SP, Manirakiza A, et al. Efficacy and safety of artemether + lumefantrine, artesunate + sulphamethoxypyrazine-pyrimethamine and artesunate + amodiaquine and sulphadoxine-pyrimethamine + amodiaquine in the treatment of uncomplicated falciparum malaria in Bangui, Central African Republic: a randomized trial[J]. Malar J, 2014, 13: 9.
doi: 10.1186/1475-2875-13-9 |
[42] |
Falade CO, Dada-Adegbola HO, Ogunkunle OO, et al. Evaluation of the comparative efficacy and safety of artemether-lumefantrine, artesunate-amodiaquine and artesunate-amodiaquine-chlorpheniramine (ArtemocloTM) for the treatment of acute uncomplicated malaria in Nigerian children[J]. Med Princ Pract, 2014, 23(3): 204-211.
doi: 10.1159/000360578 pmid: 24732940 |
[43] |
Adegbite BR, Edoa JR, Honkpehedji YJ, et al. Monitoring of efficacy, tolerability and safety of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Lambaréné, Gabon: An open-label clinical trial[J]. Malar J, 2019, 18(1): 424.
doi: 10.1186/s12936-019-3015-4 |
[44] |
Mandara CI, Francis F, Chiduo MG, et al. High cure rates and tolerability of artesunate-amodiaquine and dihydroartemisinin-piperaquine for the treatment of uncomplicated falciparum malaria in Kibaha and Kigoma, Tanzania[J]. Malar J, 2019, 18(1): 99.
doi: 10.1186/s12936-019-2740-z |
[45] |
Thwing JI, Odero CO, Odhiambo FO, et al. In-vivo efficacy of amodiaquine-artesunate in children with uncomplicated Plasmodium falciparum malaria in western Kenya[J]. Trop Med Int Health, 2009, 14(3): 294-300.
doi: 10.1111/j.1365-3156.2009.02222.x pmid: 19187521 |
[46] |
Abuaku B, Duah-Quashie NO, Quashie N, et al. Trends and predictive factors for treatment failure following artemisinin-based combination therapy among children with uncomplicated malaria in Ghana: 2005—2018[J]. BMC Infect Dis, 2021, 21(1): 1255.
doi: 10.1186/s12879-021-06961-4 |
[47] |
Koko VS, Warsame M, Vonhm B, et al. Artesunate-amodiaquine and artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Liberia: in vivo efficacy and frequency of molecular markers[J]. Malar J, 2022, 21(1): 134.
doi: 10.1186/s12936-022-04140-7 |
[48] | Marwa K, Kapesa A, Baraka V, et al. Therapeutic efficacy of artemether-lumefantrine, artesunate-amodiaquine and dihydroartem-isinin-piperaquine in the treatment of uncomplicated Plasmodium falciparum malaria in Sub-Saharan Africa: a systematic review and meta-analysis[J]. PLoS One, 2022, 17(3): e0264339. |
[49] |
Sasi P, Abdulrahaman A, Mwai L, et al. In vivo and In vitro efficacy of amodiaquine against Plasmodium falciparum in an area of continued use of 4-aminoquinolines in east Africa[J]. J Infect Dis, 2009, 199(11): 1575-1582.
doi: 10.1086/598862 |
[50] |
Menard D, Djalle D, Manirakiza A, et al. Drug-resistant malaria in Bangui, Central African Republic: an in vitro assessment[J]. Am J Trop Med Hyg, 2005, 73(2): 239-243.
doi: 10.4269/ajtmh.2005.73.239 |
[51] |
Adjuik M, Agnamey P, Babiker A, et al. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial[J]. Lancet, 2002, 359(9315): 1365-1372.
pmid: 11978332 |
[52] |
Mutabingwa TK, Anthony D, Heller A, et al. Amodiaquine alone, amodiaquine + sulfadoxine-pyrimethamine, amodiaquine+artesunate, and artemether-lumefantrine for outpatient treatment of malaria in Tanzanian children: a four-arm randomised effectiveness trial[J]. Lancet, 2005, 365(9469): 1474-1480.
doi: 10.1016/S0140-6736(05)66417-3 pmid: 15850631 |
[53] |
Otienoburu SD, Maïga-Ascofaré O, Schramm B, et al. Selection of Plasmodium falciparum pfcrt and pfmdr1 polymorphisms after treatment with artesunate-amodiaquine fixed dose combination or artemether-lumefantrine in Liberia[J]. Malar J, 2016, 15: 452.
doi: 10.1186/s12936-016-1503-3 |
[54] |
Fröberg G, Jörnhagen L, Morris U, et al. Decreased prevalence of Plasmodium falciparum resistance markers to amodiaquine despite its wide scale use as ACT partner drug in Zanzibar[J]. Malar J, 2012, 11: 321.
doi: 10.1186/1475-2875-11-321 |
[55] |
Happi CT, Gbotosho GO, Folarin OA, et al. Association between mutations in Plasmodium falciparum chloroquine resistance transporter and P. falciparum multidrug resistance 1 genes and in vivo amodiaquine resistance in P. falciparum malaria-infected children in Nigeria[J]. Am J Trop Med Hyg, 2006, 75(1): 155-161.
pmid: 16837724 |
[56] | Okell LC, Reiter LM, Ebbe LS, et al. Emerging implications of policies on malaria treatment: genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether-lumefantrine and artesunate-amodiaquine in Africa[J]. BMJ Glob Health, 2018, 3(5): e000999. |
[57] |
Humphreys GS, Merinopoulos I, Ahmed J, et al. Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria[J]. Antimicrob Agents Chemother, 2007, 51(3): 991-997.
doi: 10.1128/AAC.00875-06 pmid: 17194834 |
[58] |
Venkatesan M, Gadalla NB, Stepniewska K, et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine[J]. Am J Trop Med Hyg, 2014, 91(4): 833-843.
doi: 10.4269/ajtmh.14-0031 |
[59] |
Foguim FT, Bogreau H, Gendrot M, et al. Prevalence of mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, and association with ex vivo susceptibility to common anti-malarial drugs against African Plasmodium falciparum isolates[J]. Malar J, 2020, 19(1): 201.
doi: 10.1186/s12936-020-03281-x |
[60] |
Sa JM, Twu O. Protecting the malaria drug arsenal: halting the rise and spread of amodiaquine resistance by monitoring the PfCRT SVMNT type[J]. Malar J, 2010, 9: 374.
doi: 10.1186/1475-2875-9-374 |
[61] |
Alifrangis M, Dalgaard MB, Lusingu JP, et al. Occurrence of the Southeast Asian/south American SVMNT haplotype of the chloroquine-resistance transporter gene in Plasmodium falciparum in Tanzania[J]. J Infect Dis, 2006, 193(12): 1738-1741.
pmid: 16703518 |
[62] |
Gama BE, Pereira-Carvalho GA, Lutucuta Kosi FJ, et al. Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene[J]. Malar J, 2010, 9: 174.
doi: 10.1186/1475-2875-9-174 |
[63] |
Mekonnen SK, Aseffa A, Berhe N, et al. Return of chloroquine-sensitive Plasmodium falciparum parasites and emergence of chloroquine-resistant Plasmodium vivax in Ethiopia[J]. Malar J, 2014, 13: 244.
doi: 10.1186/1475-2875-13-244 |
[64] |
Ngassa Mbenda HG, Das A. Occurrence of multiple chloroquine-resistant Pfcrt haplotypes and emergence of the S(agt)VMNT type in Cameroonian Plasmodium falciparum[J]. J Antimicrob Chemother, 2013, 69(2): 400-403.
doi: 10.1093/jac/dkt388 |
[65] |
Holmgren G, Gil JP, Ferreira PM, et al. Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr1 86Y[J]. Infect Genet Evol, 2006, 6(4): 309-314.
doi: 10.1016/j.meegid.2005.09.001 |
[66] | World Health Organization. Guidelines for the treatment of malaria[R]. Second edition. Geneva: WHO, 2010. |
[67] |
Hodoameda P, Duah-Quashie NO, Hagan CO, et al. Plasmodium falciparum genetic factors rather than host factors are likely to drive resistance to ACT in Ghana[J]. Malar J, 2020, 19(1): 255.
doi: 10.1186/s12936-020-03320-7 |
[68] |
Paganotti GM, Gallo BC, Verra F, et al. Human genetic variation is associated with Plasmodium falciparum drug resistance[J]. J Infect Dis, 2011, 204(11): 1772-1778.
doi: 10.1093/infdis/jir629 pmid: 21998472 |
[69] |
Parikh S, Ouedraogo JB, Goldstein JA, et al. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa[J]. Clin Pharmacol Ther, 2007, 82(2): 197-203.
doi: 10.1038/sj.clpt.6100122 pmid: 17361129 |
[70] |
Backman JT, Filppula AM, Niemi M, et al. Role of cytochrome P450 2C8 in drug metabolism and interactions[J]. Pharmacol Rev, 2016, 68(1): 168-241.
doi: 10.1124/pr.115.011411 pmid: 26721703 |
[71] |
Orrell C, Taylor WRJ, Offiaro P. Acute asymptomatic hepatitis in a healthy normal volunteer exposed to 2 oral doses of amodiaquine and artesunate[J]. Trans Royal Soc Trop Med Hyg, 2001, 95(5): 517-518.
doi: 10.1016/S0035-9203(01)90024-0 |
[72] | LiverTox: Clinical and Research Information on drug-induced liver injury[R]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. |
[73] |
Markham LN, Giostra E, Hadengue A, et al. Emergency liver transplantation in amodiaquine-induced fulminant hepatitis[J]. Am J Trop Med Hyg, 2007, 77(1): 14-15.
pmid: 17620624 |
[74] | World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy[R]. Geneva: WHO, 2018. |
[1] | 李素华, 纪鹏慧, 周瑞敏, 贺志权, 钱丹, 杨成运, 刘颖, 鲁德领, 王昊, 张红卫, 赵玉玲. 2015—2019年河南省不同诊断机构疟原虫检测能力评价[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 748-753. |
[2] | 李美, 周何军, 夏志贵, 张丽, 涂宏, 尹建海. 2019年全国疟疾血涂片制作质量评估[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 754-759. |
[3] | 纪鹏慧, 蒋甜甜, 贺志权, 周瑞敏, 李素华, 杨成运, 钱丹, 刘颖, 王昊, 张红卫. 2011—2021年河南省输入性三日疟流行病学特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 801-805. |
[4] | 冯宁宁, 陶薇, 冯彤, 甄素娟, 李军, 刘洪斌. 河北省疟疾消除及消除后媒介种群和密度监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 806-809. |
[5] | 史光忠, 张海亭, 王蒴, 何海波, 程侠, 买买提江·吾买尔, 于琳, 阿衣夏木·克尤木, 赵江山. 新冠肺炎流行期间新疆报告输入性卵形疟1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 689-691. |
[6] | 国家传染病医学中心撰写组. 疟疾诊疗指南[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 419-427. |
[7] | 黄媛媛, 姚世杰, 卞致芳, 温易鑫, 郑丽, 曹雅明. 地塞米松对实验性脑型疟小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 446-453. |
[8] | 曹磊, 马琳, 朱妮, 张义, 王安礼, 王舒, 李欣欣. 2011—2020年陕西省疟疾流行特征[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 454-459. |
[9] | 葛洁云, 刘蕾, 孙毅凡, 程洋. 疟原虫纳虫空泡膜功能及其相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 402-410. |
[10] | 张丽, 易博禹, 夏志贵, 尹建海. 2021年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 135-139. |
[11] | 蒋永茂, 高涵, 王四宝. 疟疾防控新策略:利用按蚊肠道共生菌阻断疟原虫传播[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 140-145. |
[12] | 柳素珍, 纪锋颖, 石李梅. 青岛市新型冠状病毒肺炎隔离点输入性疟疾病例的调查[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 261-265. |
[13] | 田斌, 廖瑜, 文岚, 肖芳, 张兵, 申晓君. 长沙市122例输入性恶性疟原虫多药抗性基因1拷贝数变异分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 127-131. |
[14] | 夏志贵, 丰俊, 张丽, 冯欣宇, 黄芳, 尹建海, 周水森, 周升, 杨恒林, 王善青, 高琪, 汤林华, 严俊. 中国消除疟疾:监测响应系统的实施与成效分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 733-740. |
[15] | 冯宁宁, 陶薇, 冯彤, 甄素娟, 李军, 刘洪斌. 2011—2019年河北省疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 786-793. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||