中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (6): 836-841.doi: 10.12140/j.issn.1000-7423.2021.06.017
收稿日期:
2021-04-15
修回日期:
2021-05-27
出版日期:
2021-12-30
发布日期:
2021-11-19
通讯作者:
夏志贵
作者简介:
崔延雯(1996-),女,硕士研究生,从事疟疾血清流行病学研究。E-mail: 505237995@qq.com
基金资助:
CUI Yan-wen(), HUANG Fang, YIN Jian-hai, XIA Zhi-gui*(
)
Received:
2021-04-15
Revised:
2021-05-27
Online:
2021-12-30
Published:
2021-11-19
Contact:
XIA Zhi-gui
Supported by:
摘要:
准确的监测数据对开展疟疾控制、消除和消除后防止再传播工作至关重要。近年来高灵敏度的血清学监测方法不断发展和优化,特别是基于磁珠和蛋白质芯片的多重免疫分析技术,使得评估低流行区疟疾暴露风险、分析暴露的相关因素和空间异质性等成为可能。本文综述了血清学监测方法在疟疾控制与消除中的研究和应用进展,以为疟疾消除和消除后监测提供更适合的方法学工具。
中图分类号:
崔延雯, 黄芳, 尹建海, 夏志贵. 疟疾控制与消除中血清学监测方法的研究与应用进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 836-841.
CUI Yan-wen, HUANG Fang, YIN Jian-hai, XIA Zhi-gui. Research and application progress of sero-surveillance methods in malaria control and elimination[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(6): 836-841.
表1
疟疾血清学监测方法常用重组抗原的性质与应用
抗原名称 | 虫种 | 位置 | 特点 | 应用 |
---|---|---|---|---|
裂殖子顶端膜抗原1 | 间日疟原虫/恶性疟原虫 | 裂殖子 | 高免疫原性,抗体半衰期长 | 反映低流行区累积暴露和近期暴露 |
裂殖子表面蛋白-119 | 间日疟原虫/恶性疟原虫 | 裂殖子 | 交叉反应性低,抗体半衰期长 | 反映低流行区累积暴露和近期暴露 |
环子孢子蛋白 | 间日疟原虫/恶性疟原虫 | 子孢子 | 红细胞期抗体含量低 | 反映频繁或近期暴露 |
谷氨酸富集蛋白R0 | 恶性疟原虫 | 裂殖子 | 敏感性和特异性高 | 反映累积暴露 |
肝期抗原1 | 恶性疟原虫 | 感染的肝细胞 | 红细胞期抗体含量低 | 反映频繁或近期暴露 |
早期转录膜蛋白5 | 恶性疟原虫 | 红细胞表面 | 敏感性和特异性高 | 反映近期暴露 |
网状细胞结合蛋白2b | 间日疟原虫 | 顶端膜 | 敏感性和特异性高 | 反映近期暴露 |
红细胞结合蛋白Ⅱ | 间日疟原虫 | 顶端膜 | 敏感性和特异性高 | 反映近期暴露 |
[1] | WHO. World malaria report 2021 [R]. Geneva: WHO, 2021. |
[2] |
Kerkhof K, Canier L, Kim S, et al. Implementation and application of a multiplex assay to detect malaria-specific antibodies: a promising tool for assessing malaria transmission in Southeast Asian pre-elimination areas[J]. Malar J, 2015, 14: 338.
doi: 10.1186/s12936-015-0868-z |
[3] |
Bousema T, Stevenson J, Baidjoe A, et al. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial[J]. Trials, 2013, 14: 36.
doi: 10.1186/1745-6215-14-36 pmid: 23374910 |
[4] |
Cook J, Speybroeck N, Sochanta T, et al. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia[J]. Malar J, 2012, 11: 86.
doi: 10.1186/1475-2875-11-86 |
[5] | Jiang L, Wang ZY, Zhang YG, et al. Analysis on the application of three methods for malaria diagnosis[J]. Chin J Parasitol Parasit Dis, 2017, 35(1): 53-58. (in Chinese) |
(江莉, 王真瑜, 张耀光, 等. 3种疟疾检测方法的应用分析[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(1): 53-58.) | |
[6] |
Greenhouse B, Smith DL, Rodríguez-Barraquer I, et al. Taking sharper pictures of malaria with CAMERAs: combined antibodies to measure exposure recency assays[J]. Am J Trop Med Hyg, 2018, 99(5): 1120-1127.
doi: 10.4269/ajtmh.18-0303 |
[7] | Tang LY, Zhou YC, Bai XR, et al. Application of IFAT in seroepidemiological surveillance of malaria[J]. Chin Trop Med, 2001, 1(2): 155-157. (in Chinese) |
(唐来仪, 周月婵, 白晓蓉, 等. 间接荧光抗体试验在疟疾血清流行病学监测中的应用[J]. 中国热带医学, 2001, 1(2): 155-157.) | |
[8] | Dong XR, Huang GQ, Lin W, et al. Surveillance of malaria based on indirect fluorescent antibody test in Hubei, 2006—2010[J]. J Prev Med Inf, 2014, 30(12): 984-986. (in Chinese) |
(董小蓉, 黄光全, 林文, 等. 2006—2010年湖北省疟疾间接荧光抗体监测分析[J]. 预防医学情报杂志, 2014, 30(12): 984-986.) | |
[9] | She RC, Rawlins ML, Mohl R, et al. Comparison of immunofluorescence antibody testing and two enzyme immunoassays in the serologic diagnosis of malaria[J]. Travel Med, 2007, 14(2): 105-111. |
[10] |
Drakeley CJ, Corran PH, Coleman PG, et al. Estimating medium-and long-term trends in malaria transmission by using serological markers of malaria exposure[J]. Proc Nalt Acad Sci USA, 2005, 102(14): 5108-5113.
doi: 10.1073/pnas.0408725102 |
[11] | Guo HF. A new method to detect antibodies based on immunomagnetic beads that can be used repeatedly and the primary frame of the micro-hydromagnet proteinic-chip that can be used repeatedly[D]. Xi’an: The Fourth Military Medical University, 2006. (in Chinese) |
(郭慧芳. 基于可重复使用免疫磁珠的抗体检测方法建立及可重复使用磁性微流体蛋白芯片初步设计[D]. 西安: 第四军医大学, 2006.) | |
[12] | Zhang X, Chen YJ, Cheng M, et al. Advance in the immunological detection technologies research of serum protein biomarkers[J]. Chin Med Her, 2019, 16(36): 24-28, 36. (in Chinese) |
(张雪, 陈艳焦, 程觅, 等. 血清蛋白生物标志物免疫学测定技术研究进展[J]. 中国医药导报, 2019, 16(36): 24-28, 36.) | |
[13] |
Murungi LM, Kimathi RK, Tuju J, et al. Serological profiling for malaria surveillance using a standard ELISA protocol[J]. Methods Mol Biol, 2019, 2013: 83-90.
doi: 10.1007/978-1-4939-9550-9_6 pmid: 31267495 |
[14] |
van den Hoogen LL, Bareng P, Alves J, et al. Comparison of commercial ELISA kits to confirm the absence of transmission in malaria elimination settings[J]. Front Public Health, 2020, 8: 480.
doi: 10.3389/fpubh.2020.00480 pmid: 33014975 |
[15] |
Breen EC, Reynolds SM, Cox C, et al. Multisite comparison of high-sensitivity multiplex cytokine assays[J]. Clin Vaccine Immunol, 2011, 18(8): 1229-1242.
doi: 10.1128/CVI.05032-11 |
[16] |
Ondigo BN, Park GS, Ayieko C, et al. Comparison of non-magnetic and magnetic beads multiplex assay for assessment of Plasmodium falciparum antibodies[J]. Peer J, 2019, 7: e6120.
doi: 10.7717/peerj.6120 |
[17] | Chen ZB, Wang B, Gu J, et al. Development and verification of a method for multiplex detection of specific human serum IgG antibodies against recombinant Staphylococcus aureus vaccine based on Luminex system[J]. Chin J Biol, 2020, 33(9): 1042-1047, 1053. (in Chinese) |
(陈质斌, 王斌, 顾江, 等. 重组金黄色葡萄球菌疫苗特异性人血清IgG抗体luminex系统多重检测方法的建立及验证[J]. 中国生物制品学杂志, 2020, 33(9): 1042-1047, 1053.) | |
[18] |
Folegatti PM, Siqueira AM, Monteiro WM, et al. A systematic review on malaria sero-epidemiology studies in the Brazilian Amazon: insights into immunological markers for exposure and protection[J]. Malar J, 2017, 16: 107.
doi: 10.1186/s12936-017-1762-7 |
[19] |
Crompton PD, Kayala MA, Traore B, et al. A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray[J]. Proc Nalt Acad Sci USA, 2010, 107(15): 6958-6963.
doi: 10.1073/pnas.1001323107 |
[20] |
Finney OC, Danziger SA, Molina DM, et al. Predicting antidisease immunity using proteome arrays and sera from children naturally exposed to malaria[J]. Mol Cell Proteomics, 2014, 13(10): 2646-2660.
doi: 10.1074/mcp.M113.036632 |
[21] |
Dowall SD, Graham VA, Fletcher T, et al. Use and reliability of multiplex bead-based assays (Luminex) at containment level 4[J]. Methods, 2019, 158: 17-21.
doi: 10.1016/j.ymeth.2019.02.008 |
[22] |
Houser B. Bio-Rad’s Bio-Plex® suspension array system, xMAP technology overview[J]. Arch Physiol Biochem, 2012, 118(4): 192-196.
doi: 10.3109/13813455.2012.705301 pmid: 22852821 |
[23] |
Tighe PJ, Ryder RR, Todd I, et al. ELISA in the multiplex era: potentials and pitfalls[J]. Proteomics Clin Appl, 2015, 9(3/4): 406-422.
doi: 10.1002/prca.v9.3-4 |
[24] |
Priest JW, Jenks MH, Moss DM, et al. Integration of multiplex bead assays for parasitic diseases into a national, population-based serosurvey of women 15-39 years of age in Cambodia[J]. PLoS Negl Trop Dis, 2016, 10(5): e0004699.
doi: 10.1371/journal.pntd.0004699 |
[25] |
Kerkhof K, Sluydts V, Willen L, et al. Serological markers to measure recent changes in malaria at population level in Cambodia[J]. Malar J, 2016, 15: 529.
doi: 10.1186/s12936-016-1576-z |
[26] |
Proietti C, Verra F, Bretscher MT, et al. Influence of infection on malaria-specific antibody dynamics in a cohort exposed to intense malaria transmission in northern Uganda[J]. Parasite Immunol, 2013, 35(5/6): 164-173.
doi: 10.1111/pim.2013.35.issue-5pt6 |
[27] |
van den Hoogen LL, Présumé J, Romilus I, et al. Quality control of multiplex antibody detection in samples from large-scale surveys: the example of malaria in Haiti[J]. Sci Rep, 2020, 10: 1135.
doi: 10.1038/s41598-020-57876-0 pmid: 31980693 |
[28] |
Varela ML, Mbengue B, Basse A, et al. Optimization of a magnetic bead-based assay (MAGPIX^®-Luminex) for immune surveillance of exposure to malaria using multiple Plasmodium antigens and sera from different endemic settings[J]. Malar J, 2018, 17: 1-9.
doi: 10.1186/s12936-017-2149-5 |
[29] | Wang W. CD20/486 ssDNA aptamers screening by SELEX and its application in tumor markers protein microarray construction[D]. Guangzhou: Southern Medical University, 2019. (in Chinese) |
(王伟. 蛋白质芯片在肿瘤标志物筛查中的应用以及利用SELEX技术筛选CD20/486的ssDNA适配体的研究[D]. 广州: 南方医科大学, 2019.) | |
[30] | Fulton KM, Twine SM. Immunoproteomics: current technology and applications[J]. Methods Mol Biol, 2013, 1601: 21-57. |
[31] |
Sundaresh S, Doolan DL, Hirst S, et al. Identification of humoral immune responses in protein microarrays using DNA microarray data analysis techniques[J]. Bioinformatics, 2006, 22(14): 1760-1766.
pmid: 16644788 |
[32] |
Ondigo BN, Hodges JS, Ireland KF, et al. Estimation of recent and long-term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens[J]. J Infect Dis, 2014, 210(7): 1123-1132.
doi: 10.1093/infdis/jiu225 |
[33] |
Badu K, Afrane YA, Larbi J, et al. Marked variation in MSP-119 antibody responses to malaria in western Kenyan Highlands[J]. BMC Infect Dis, 2012, 12: 50.
doi: 10.1186/1471-2334-12-50 |
[34] |
McCallum FJ, Persson KE, Fowkes FJ, et al. Differing rates of antibody acquisition to merozoite antigens in malaria: implications for immunity and surveillance[J]. J Leukoc Biol, 2017, 101(4): 913-925.
doi: 10.1189/jlb.5MA0716-294R |
[35] |
Mugyenyi CK, Elliott SR, Yap XZ, et al. Declining malaria transmission differentially impacts the maintenance of humoral immunity to Plasmodium falciparum in children[J]. J Infect Dis, 2017, 216(7): 887-898.
doi: 10.1093/infdis/jix370 |
[36] |
van den Hoogen LL, Stresman G, Présumé J, et al. Selection of antibody responses associated with Plasmodium falciparum infections in the context of malaria elimination[J]. Front Immunol, 2020, 11: 928.
doi: 10.3389/fimmu.2020.00928 pmid: 32499783 |
[37] |
Kusi KA, Bosomprah S, Dodoo D, et al. Anti-sporozoite antibodies as alternative markers for malaria transmission intensity estimation[J]. Malar J, 2014, 13: 103.
doi: 10.1186/1475-2875-13-103 |
[38] |
Seck MC, Thwing J, Badiane AS, et al. Analysis of anti-Plasmodium IgG profiles among Fulani nomadic pastoralists in northern Senegal to assess malaria exposure[J]. Malar J, 2020, 19(1): 15.
doi: 10.1186/s12936-020-3114-2 |
[39] |
Idris ZM, Chan CW, Mohammed M, et al. Serological measures to assess the efficacy of malaria control programme on Ambae Island, Vanuatu[J]. Parasit Vectors, 2017, 10(1): 204.
doi: 10.1186/s13071-017-2139-z |
[40] |
Nyunt MH, Soe TN, Shein T, et al. Estimation on local transmission of malaria by serological approach under low transmission setting in Myanmar[J]. Malar J, 2018, 17: 6.
doi: 10.1186/s12936-017-2170-8 |
[41] |
Priest JW, Plucinski MM, Huber CS, et al. Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP119 subunit proteins in multiplexed serologic assays[J]. Malar J, 2018, 17: 417.
doi: 10.1186/s12936-018-2566-0 |
[42] |
Longley RJ, White MT, Takashima E, et al. Development and validation of serological markers for detecting recent Plasmodium vivax infection[J]. Nat Med, 2020, 26(5): 741-749.
doi: 10.1038/s41591-020-0841-4 pmid: 32405064 |
[43] |
Cunha MG, Silva ES, Sepúlveda N, et al. Serologically defined variations in malaria endemicity in Pará State, Brazil[J]. PLoS One, 2014, 9(11): e113357.
doi: 10.1371/journal.pone.0113357 |
[44] |
Dewasurendra RL, Dias JN, Sepulveda N, et al. Effectiveness of a serological tool to predict malaria transmission intensity in an elimination setting[J]. BMC Infect Dis, 2017, 17(1): 49.
doi: 10.1186/s12879-016-2164-0 pmid: 28068925 |
[45] |
Surendra H, Supargiyono, Ahmad RA, et al. Using health facility-based serological surveillance to predict receptive areas at risk of malaria outbreaks in elimination areas[J]. BMC Med, 2020, 18(1): 9.
doi: 10.1186/s12916-019-1482-7 pmid: 31987052 |
[46] |
Kattenberg JH, Erhart A, Truong MH, et al. Characterization of Plasmodium falciparum and Plasmodium vivax recent exposure in an area of significantly decreased transmission intensity in Central Vietnam[J]. Malar J, 2018, 17: 180.
doi: 10.1186/s12936-018-2326-1 |
[47] |
Assefa A, Ali Ahmed A, Deressa W, et al. Multiplex serology demonstrate cumulative prevalence and spatial distribution of malaria in Ethiopia[J]. Malar J, 2019, 18: 246.
doi: 10.1186/s12936-019-2874-z |
[48] |
Helb DA, Tetteh KK, Felgner PL, et al. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities[J]. Proc Nalt Acad Sci USA, 2015, 112(32): E4438-E4447.
doi: 10.1073/pnas.1501705112 |
[49] |
Surendra H, Wijayanti MA, Murhandarwati EH, et al. Analysis of serological data to investigate heterogeneity of malaria transmission: a community-based cross-sectional study in an area conducting elimination in Indonesia[J]. Malar J, 2019, 18: 227.
doi: 10.1186/s12936-019-2866-z |
[50] |
Kerkhof K, Sluydts V, Heng S, et al. Geographical patterns of malaria transmission based on serological markers for falciparum and vivax malaria in Ratanakiri, Cambodia[J]. Malar J, 2016, 15: 510.
doi: 10.1186/s12936-016-1558-1 |
[51] |
Baidjoe AY, Stevenson J, Knight P, et al. Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan Highlands[J]. Malar J, 2016, 15: 307.
doi: 10.1186/s12936-016-1362-y |
[52] |
Cook J, Kleinschmidt I, Schwabe C, et al. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, equatorial Guinea[J]. PLoS One, 2011, 6(9): e25137.
doi: 10.1371/journal.pone.0025137 |
[53] |
Stresman GH, Giorgi E, Baidjoe A, et al. Impact of metric and sample size on determining malaria hotspot boundaries[J]. Sci Rep, 2017, 7: 45849.
doi: 10.1038/srep45849 pmid: 28401903 |
[54] |
Biggs J, Raman J, Cook J, et al. Serology reveals heterogeneity of Plasmodium falciparum transmission in northeastern South Africa: implications for malaria elimination[J]. Malar J, 2017, 16: 48.
doi: 10.1186/s12936-017-1701-7 |
[55] |
malERA Consultative Group on Monitoring, Evaluation, and Surveillance. A research agenda for malaria eradication: monitoring, evaluation, and surveillance[J]. PLoS Med, 2011, 8(1): e1000400.
doi: 10.1371/journal.pmed.1000400 |
[56] |
Stewart L, Gosling R, Griffin J, et al. Rapid assessment of malaria transmission using age-specific sero-conversion rates[J]. PLoS One, 2009, 4(6): e6083.
doi: 10.1371/journal.pone.0006083 |
[57] | Elliott SR, Fowkes FJ, Richards JS, et al. Research priorities for the development and implementation of serological tools for malaria surveillance[J]. F1000Prime Rep, 2014, 6: 100. |
[1] | 李慧敏, 刘婧姝, 王希涵, 赵翰卿, 解艺, 尹静娴, 吕超, 周楠, 蒋天哥, 谷思雨, 殷堃, 周晓农, 郭晓奎, 胡沁沁. 基于全健康理念的新发传染病综合监测预警体系:结构与创新[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 572-578. |
[2] | 王可艺, 舒黄芳, 方悦怡, 曾庆生, 宋铁. 2016—2020年广东省华支睾吸虫病高流行地区人群感染监测分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 629-634. |
[3] | 史光忠, 张海亭, 王蒴, 何海波, 程侠, 买买提江·吾买尔, 于琳, 阿衣夏木·克尤木, 赵江山. 新冠肺炎流行期间新疆报告输入性卵形疟1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 689-691. |
[4] | 国家传染病医学中心撰写组. 疟疾诊疗指南[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 419-427. |
[5] | 黄媛媛, 姚世杰, 卞致芳, 温易鑫, 郑丽, 曹雅明. 地塞米松对实验性脑型疟小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 446-453. |
[6] | 曹磊, 马琳, 朱妮, 张义, 王安礼, 王舒, 李欣欣. 2011—2020年陕西省疟疾流行特征[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 454-459. |
[7] | 谢贤良, 陈云虹, 江典伟, 高澜琳, 郑丹, 张志魁, 魏美羡, 谢汉国. 2016—2020年漳州市国家监测点土源性线虫感染情况[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 545-548. |
[8] | 葛洁云, 刘蕾, 孙毅凡, 程洋. 疟原虫纳虫空泡膜功能及其相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 402-410. |
[9] | 张丽, 易博禹, 夏志贵, 尹建海. 2021年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 135-139. |
[10] | 蒋永茂, 高涵, 王四宝. 疟疾防控新策略:利用按蚊肠道共生菌阻断疟原虫传播[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 140-145. |
[11] | 江莉, 张耀光, 刘红霞, 王真瑜, 朱民, 吴寰宇. 疟疾蚊媒监测多重PCR方法的建立[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 159-167. |
[12] | 于维君, 王子江, 王博, 毛玲玲, 吴琪俊, 姚文清, 孙英伟. 2016—2020年辽宁省土源性线虫感染现状及流行趋势[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 211-215. |
[13] | 吴向林, 闫芳, 段红菊, 齐蓉婷, 高建炜. 2020年宁夏回族自治区棘球蚴病监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 242-246. |
[14] | 柳素珍, 纪锋颖, 石李梅. 青岛市新型冠状病毒肺炎隔离点输入性疟疾病例的调查[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 261-265. |
[15] | 田斌, 廖瑜, 文岚, 肖芳, 张兵, 申晓君. 长沙市122例输入性恶性疟原虫多药抗性基因1拷贝数变异分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 127-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||