[1] | Liao ZW, Wang SQ. Prevalence and prevention of major tropical diseases in China, 2000—2019[J]. Chin Trop Med, 2020, 20(3): 193-201. (in Chinese) | [1] | (廖志武, 王善青. 我国2000—2019年主要热带病的流行与防治概况[J]. 中国热带医学, 2020, 20(3): 193-201.) | [2] | Deng WC, Li YS, Cheng XH, et al. Implications, spiritual characteristics and practical significance of Chinese schistosomiasis control culture[J]. Chin J Schisto Control, 2020, 32(3): 222-224, 229. (in Chinese) | [2] | (邓维成, 李岳生, 程湘晖, 等. 论中国血防文化的内涵与精神特质及其现实意义[J]. 中国血吸虫病防治杂志, 2020, 32(3): 222-224, 229.) | [3] | Mao SB. The biology of schistosomiasis and the control of schistosomiasis[M]. Beijing: People’s Medical Publishing House, 1990: 699. (in Chinese) | [3] | (毛守白. 血吸虫生物学与血吸虫病的防治[M]. 北京: 人民卫生出版社, 1990: 699.) | [4] | Zhou XN. Science on oncomelania snail[M]. Beijing: Science Press, 2005: 1. (in Chinese) | [4] | (周晓农. 实用钉螺学[M]. 北京: 科学出版社, 2005: 1.) | [5] | Jiang TT, Yang K. Progresses of research on patterns and monitoring approaches of Oncomelania hupensis spread[J]. Chin J Schisto Control, 2020, 32(2): 208-212. (in Chinese) | [5] | (蒋甜甜, 杨坤. 钉螺扩散规律与监测方法研究进展[J]. 中国血吸虫病防治杂志, 2020, 32(2): 208-212.) | [6] | Chinese Academy of Medical Sciences. Problems and improvement opinions on the method of Oncomelania survey[J]. Med Health Exp, 1960, 1: 18-19. (in Chinese) | [6] | (中国医学科学院. 钉螺调查方法上存在的问题和改进意见[J]. 医药卫生快报, 1960, 1: 18-19.) | [7] | Chen M, Peng XW, Zhang HM, et al. Systematic field survey on the snail density by space sectioning method[J]. J Trop Dis Parasitol, 2015, 13(1): 23-25. (in Chinese) | [7] | (陈美, 彭孝武, 张华明, 等. 按钉螺密度分级设定系统抽样查螺间距的探讨[J]. 热带病与寄生虫学, 2015, 13(1): 23-25.) | [8] | LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. | [9] | He KM, Zhang XY, Ren SQ., et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification [C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 1026-1034. | [10] | Carin L, Pencina MJ. On deep learning for medical image analysis[J]. JAMA, 2018, 320(11): 1192. | [11] | Chae S, Kwon S, Lee D. Predicting infectious disease using deep learning and big data[J]. Int J Environ Res Public Health, 2018, 15(8): 1596. | [12] | Wallis C. How artificial intelligence will change medicine[J]. Nature, 2019, 576(7787): S48. | [13] | National Health and Family Planning Commission of the People’s Republic of China. Survey of oncomelanid snails: WS/T 563—2017[S]. Beijing: China Standard Press, 2017. (in Chinese) | [13] | (中华人民共和国国家卫生和计划生育委员会. 钉螺调查 WS/T 563—2017[S]. 北京: 中国标准出版社, 2017.) | [14] | Liu YY, Zhang WZ, Wang YX. Medical malacology[M]. Beijing: Ocean Press, 1993: 1-157. (in Chinese) | [14] | (刘月英, 张文珍, 王耀先. 医学贝类学[M]. 北京: 海洋出版社, 1993: 1-157.) | [15] | Shi L, Xiong CR, Liu MM, et al. Establishment of a deep learning-visual model for intelligent recognition of Oncomelania hupensis[J]. Chin J Schisto Control, 2021, 33(5): 445-451. (in Chinese) | [15] | (施亮, 熊春蓉, 刘毛毛, 等. 基于深度学习技术的湖北钉螺视觉智能识别模型的建立[J]. 中国血吸虫病防治杂志, 2021, 33(5): 445-451. | [16] | Wei XS. Analyzing deep learning: convolutional neural network principle and vision practice[M]. Beijing: Publishing House of Electronics Industry, 2018. (in Chinese) | [16] | (魏秀参. 解析深度学习: 卷积神经网络原理与视觉实践[M]. 北京: 电子工业出版社, 2018. | [17] | Howard AG, Zhu ML, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704.04861, 2017. | [18] | He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. | [19] | Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]. AAAI Conference on Artificial Intelligence, 2016. | [20] | Zhou ZH. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 28-36. (in Chinese) | [20] | (周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 28-36.) | [21] | Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks[J]. Inf Process Manag, 2009, 45(4): 427-437. | [22] | Zhou YB, Zhao GM. Reliability of measurement and the methods of estimating reliability[J]. Chin J Epidemiol, 2003, 24(12): 1146-1149. (in Chinese) | [22] | (周艺彪, 赵根明. 测量的可靠性及其估计方法[J]. 中华流行病学杂志, 2003, 24(12): 1146-1149.) | [23] | Zhang LJ, Xu ZM, Dang H, et al. Endemic status of schistosomiasis in People’s Republic of China in 2019[J]. Chin J Schisto Control, 2020, 32(6): 551-558. (in Chinese) | [23] | (张利娟, 徐志敏, 党辉, 等. 2019年全国血吸虫病疫情通报[J]. 中国血吸虫病防治杂志, 2020, 32(6): 551-558.) | [24] | Zhang LJ, Zhu HQ, Wang Q, et al. Assessment of schistosomiasis transmission risk along the Yangtze River basin after the flood disaster in 2020[J]. Chin J Schisto Control, 2020, 32(5): 464-468, 475. (in Chinese) | [24] | (张利娟, 祝红庆, 王强, 等. 2020年长江流域洪涝灾害后血吸虫病传播风险分析[J]. 中国血吸虫病防治杂志, 2020, 32(5): 464-468, 475.) | [25] | Zhang YE. Search of snail recognition and counting based on template matching of color and shape[J]. J Gannan Norm Univ, 2012, 33(6): 33-36. (in Chinese) | [25] | (章银娥. 基于颜色和形状的模板匹配的钉螺识别计数研究[J]. 赣南师范学院学报, 2012, 33(6): 33-36.) | [26] | Yan SH, Huang XT. The Oncomelania digital image identification based on SIFT & SVM[J]. J Gannan Norm Univ, 2011, 32(6): 58-61. (in Chinese) | [26] | (严深海, 黄贤通. 基于SIFT与SVM的钉螺数字图像识别[J]. 赣南师范学院学报, 2011, 32(6): 58-61.) | [27] | Wang H. Research on snail image recognition technology based on neural network[D]. Wuhan: Hubei University, 2010: 1-49. (in Chinese) | [27] | (汪浩. 基于神经网络的钉螺图像识别技术研究[D]. 武汉: 湖北大学, 2010: 1-49.) | [28] | Wei XS, Xie CW, Wu JX, et al. Mask-CNN: localizing parts and selecting descriptors for fine-grained bird species categorization[J]. Pattern Recognit, 2018, 76: 704-714. | [29] | Wei XS, Luo JH, Wu J, et al. Selective convolutional descriptor aggregation for fine-grained image retrieval[J]. IEEE Trans Image Process, 2017, 26(6): 2868-2881. | [30] | Smith KP, Kirby JE. Image analysis and artificial intelligence in infectious disease diagnostics[J]. Clin Microbiol Infect, 2020, 26(10): 1318-1323. | [31] | Shi F, Wang J, Shi J, et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19[J]. IEEE Rev Biomed Eng, 2021, 14: 4-15. | [32] | Song J, Gao C, Han Q, et al. Construction and clinical preliminary validation of an automaticbone age assessment model based on deep learning[J]. Chin J Radiol, 2019, 53(11): 974-978. (in Chinese) | [32] | (宋娟, 高畅, 韩青, 等. 基于深度学习的儿童骨龄智能评估模型构建及初步临床验证[J]. 中华放射学杂志, 2019, 53(11): 974-978.) | [33] | Yang F, Poostchi M, Yu H, et al. Deep learning for smartphone-based malaria parasite detection in thick blood smears[J]. IEEE J Biomed Heal Informatics, 2019, 24(5): 1427-1438. |
|