中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (3): 393-402.doi: 10.12140/j.issn.1000-7423.2021.03.016
收稿日期:
2020-08-20
修回日期:
2020-09-25
出版日期:
2021-06-30
发布日期:
2021-07-05
通讯作者:
程洋
作者简介:
杨博(1996-),女,硕士研究生,从事病原感染与免疫研究。E-mail: 15546656573@163.com
基金资助:
YANG Bo(), SUN Yi-fan, LEI Yao, CHENG Yang*(
)
Received:
2020-08-20
Revised:
2020-09-25
Online:
2021-06-30
Published:
2021-07-05
Contact:
CHENG Yang
Supported by:
摘要:
青蒿素是一种安全性良好的抗疟药物,以青蒿素为基础的联合用药已被世界卫生组织推荐为治疗恶性疟的一线方法。然而,青蒿素在治疗疟疾的过程中已产生耐药性,并已逐渐成为疟疾控制的主要威胁。青蒿素类药物以其速效、低毒等特点备受关注。近年来,青蒿素及其衍生物的研究和临床应用正在不断开展与深入,本文对近年来青蒿素类药物的抗疟机制、耐药现象及机制、临床应用等方面的研究进展进行了综述,以期对青蒿素及其衍生物的进一步研究和应用提供有价值的参考。
中图分类号:
杨博, 孙毅凡, 雷瑶, 程洋. 青蒿素及其衍生物治疗疟疾的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 393-402.
YANG Bo, SUN Yi-fan, LEI Yao, CHENG Yang. Research progress on the treatment of malaria with artemisinin and its derivatives[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(3): 393-402.
表1
ACTs治疗疟疾的临床试验
试验药物 | 试验时间、地点 | 试验对象 | 试验结果 | 参考文献 |
---|---|---|---|---|
AS + SP;AL | 2009年11月至2013年3月;也门 | 432名6个月至75岁的恶性疟患者 | AS+SP的PCR校正治愈率为98%和100%,AL的PCR校正治愈率均为100% | [ |
PND-AS;DHA + PPQ | 2011年10月至2016年2月;西非 | 4 710名6个月及以上的成人和儿童恶性疟患者 | 在第28天和第42天,所有研究方法对经PCR调整的人群总有效率均超过99% | [ |
AL;DHA + PPQ | 2012年1月至2013年3月;乌干达东部 | 150名患严重疟疾的儿童 | 第7天毛细血管哌喹浓度低(<57 ng/ml)的儿童治疗失败的风险是浓度高(> 57 ng/ml)的儿童的两倍;建议在儿童中采用更高剂量的DHA+PPQ | [ |
DHA + PPQ;DHA-PPQ + MQ;AS + MQ;AL;AL + AQ | 2015年8月至2018年2月;大湄公河次区域国家及孟加拉国、印度、刚果民主共和国 | 1 100例2至65岁感染恶性疟原虫者 | DHA-PPQ+MQ组在3个地区中第42天的 PCR校正有效率分别为98%、91%、96%;AL+AQ组第42天%) | [ |
MB-As-AQ;PQ-As-AQ | 2016年7月至11月;布基纳法索 | 100名6至59个月的单纯恶性疟患儿 | MB组的疟原虫清除率明显更高,配子体密度低于PQ组 | [ |
AS + AQ;AL | 2017年10月至2018年3月;加蓬兰巴莱市 | 100名6个月至12岁的儿童 | AL和AS+AQ第28天的PCR校正治愈率分别为97%和95% | [ |
[1] | World Health Organization. World Malaria Report 2020[R]. Geneva: WHO, 2020. |
[2] |
Tu Y. Artemisinin--a gift from traditional Chinese medicine to the world (Nobel lecture)[J]. Angew Chem Int Ed Engl, 2016,55(35):10210-10226.
doi: 10.1002/anie.201601967 |
[3] |
Ashley EA, Phyo AP. Drugs in development for malaria[J]. Drugs, 2018,78(9):861-879.
doi: 10.1007/s40265-018-0911-9 |
[4] |
Tu YY. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine[J]. Nat Med, 2011,17(10):1217-1220.
doi: 10.1038/nm.2471 |
[5] |
Balint GA. Artemisinin and its derivatives: an important new class of antimalarial agents[J]. Pharmacol Ther, 2001,90(2/3):261-265.
doi: 10.1016/S0163-7258(01)00140-1 |
[6] | Li Y, Zhang HB, Ye YP. Synjournal of esters of dihydroartemisinin and 11, 12-dihydroxyartemisinin[J]. Chin J Med Chem, 1995,5(2):127-130. (in Chinese) |
( 李英, 张惠斌, 叶云鹏. 二氢青蒿素和11-羟基二氢青蒿素的酯类衍生物的合成[J]. 中国药物化学杂志, 1995,5(2):127-130.) | |
[7] | Li XF, Xia DL, Liu GZ, et al. Optimal preparation process of artemether by orthogonal experiments[J]. Exp Sci Technol, 2008,6(2):36-38. (in Chinese) |
( 李雪芳, 夏都灵, 刘国柱, 等. 双氢青蒿素醚化法制备蒿甲醚的工艺优化[J]. 实验科学与技术, 2008,6(2):36-38.) | |
[8] |
Ploypradith P. Development of artemisinin and its structurally simplified trioxane derivatives as antimalarial drugs[J]. Acta Trop, 2004,89(3):329-342.
pmid: 14744559 |
[9] |
Gomes M, Ribeiro I, Warsame M, et al. Rectal artemisinins for malaria: a review of efficacy and safety from individual patient data in clinical studies[J]. BMC Infect Dis, 2008,8:39.
doi: 10.1186/1471-2334-8-39 |
[10] |
Tiwari MK, Chaudhary S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side: chronological advancements and future challenges[J]. Med Res Rev, 2020,40(4):1220-1275.
doi: 10.1002/med.21657 pmid: 31930540 |
[11] | World Health Organization. Guidelines for the treatment of malaria[M]. Geneva: World Health Organization, 2010. |
[12] | World Health Organization. Guidelines for the treatment of malaria[M]. Geneva: World Health Organization, 2015. |
[13] |
Kabanywanyi AM, Mwita A, Sumari D, et al. Efficacy and safety of artemisinin-based antimalarial in the treatment of uncomplicated malaria in children in southern Tanzania[J]. Malar J, 2007,6:146.
doi: 10.1186/1475-2875-6-146 |
[14] | Li J, Wu LO, Yang ZQ. Comparison of efficacy of artemisinin antimalarials and combined use the drugs[J]. Chin Trop Med, 2009,9(1):157-159, 195. (in Chinese) |
( 李佳, 吴兰鸥, 杨照青. 青蒿素类抗疟药药效的比较及联合用药[J]. 中国热带医学, 2009,9(1):157-159, 195.) | |
[15] |
Sun C, Li J, Cao Y, et al. Two distinct and competitive pathways confer the cellcidal actions of artemisinins[J]. Microb Cell, 2015,2(1):14-25.
doi: 10.15698/mic |
[16] |
Antoine T, Fisher N, Amewu R, et al. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential[J]. J Antimicrob Chemother, 2014,69(4):1005-1016.
doi: 10.1093/jac/dkt486 |
[17] |
Olliaro PL, Haynes RK, Meunier B, et al. Possible modes of action of the artemisinin-type compounds[J]. Trends Parasitol, 2001,17(3):122-126.
pmid: 11286794 |
[18] |
Haynes RK, Ho WY, Chan HW, et al. Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity[J]. Angew Chem Int Ed Engl, 2004,43(11):1381-1385.
doi: 10.1002/(ISSN)1521-3773 |
[19] |
Haynes RK, Chan WC, Lung CM, et al. The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates[J]. Chem Med Chem, 2007,2(10):1480-1497.
doi: 10.1002/(ISSN)1860-7187 |
[20] |
Stocks PA, Bray PG, Barton VE, et al. Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs[J]. Angew Chem Int Ed Engl, 2007,46(33):6278-6283.
doi: 10.1002/anie.v46:33 |
[21] |
Gunjan S, Sharma T, Yadav K, et al. Artemisinin derivatives and synthetic trioxane trigger apoptotic cell death in asexual stages of Plasmodium[J]. Front Cell Infect Microbiol, 2018,8:256.
doi: 10.3389/fcimb.2018.00256 |
[22] |
Eichhorn T, Winter D, Büchele B, et al. Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum[J]. Biochem Pharmacol, 2013,85(1):38-45.
doi: 10.1016/j.bcp.2012.10.006 |
[23] |
Eckstein-Ludwig U, Webb RJ, van Goethem IDA, et al. Artemisinins target the of Plasmodium falciparum[J]. Nature, 2003,424(6951):957-961.
pmid: 12931192 |
[24] |
Wang JG, Zhang CJ, Chia WN, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum[J]. Nat Commun, 2015,6:10111.
doi: 10.1038/ncomms10111 |
[25] | World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy 2019[M/OL]. World Health Organization, 2019. https://www.who.int/docs/default-source/documents/publications/gmp/who-cds-gmp-2019-17-eng.pdf?ua=1 |
[26] |
Chhibber-Goel J, Sharma A. Profiles of Kelch mutations in Plasmodium falciparum across South Asia and their implications for tracking drug resistance[J]. Int J Parasitol Drugs Drug Resist, 2019,11:49-58.
doi: 10.1016/j.ijpddr.2019.10.001 |
[27] |
Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western Cambodia[J]. N Engl J Med, 2008,359(24):2619-2620.
doi: 10.1056/NEJMc0805011 |
[28] |
Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2009,361(5):455-467.
doi: 10.1056/NEJMoa0808859 |
[29] |
Wang JG, Xu CC, Liao FL, et al. A temporizing solution to “artemisinin resistance”[J]. N Engl J Med, 2019,380(22):2087-2089.
doi: 10.1056/NEJMp1901233 |
[30] |
Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2014,371(5):411-423.
doi: 10.1056/NEJMoa1314981 |
[31] | White NJ. Artemisinin resistance--the clock is ticking[J]. Lancet, 2010,376(9758):2051-2052. |
[32] |
Imwong M, Suwannasin K, Kunasol C, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study[J]. Lancet Infect Dis, 2017,17(5):491-497.
doi: 10.1016/S1473-3099(17)30048-8 |
[33] |
Rosenthal PJ. The interplay between drug resistance and fitness in malaria parasites[J]. Mol Microbiol, 2013,89(6):1025-1038.
doi: 10.1111/mmi.2013.89.issue-6 |
[34] |
Lu F, Culleton R, Zhang M, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa[J]. N Engl J Med, 2017,376(10):991-993.
doi: 10.1056/NEJMc1612765 |
[35] | Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria[J]. Microbiol Spectr, 2016,4(3): 10.1128/microbiolspec.EI10-0013-2016. |
[36] | World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy[M/OL]. World Health Organization, 2018. https://www.who.int/malaria/publications/atoz/artemisinin-resistance-august2018/en/. |
[37] |
Coppée R, Jeffares DC, Miteva MA, et al. Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13[J]. Sci Rep, 2019,9(1):10675.
doi: 10.1038/s41598-019-47034-6 |
[38] |
Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014,505(7481):50-55.
doi: 10.1038/nature12876 |
[39] |
Phyo A P, Ashley E A, Anderson T, et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003—2013): the role of parasite genetic factors[J]. Clin Infect Dis, 2016,63(6):784-791.
doi: 10.1093/cid/ciw388 |
[40] |
Ye R, Hu D, Zhang Y, et al. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China-Myanmar border[J]. Sci Rep, 2016,6:20100.
doi: 10.1038/srep20100 |
[41] |
Uwimana A, Legrand E, Stokes BH, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda[J]. Nat Med, 2020,26(10):1602-1608.
doi: 10.1038/s41591-020-1005-2 |
[42] |
Mishra S, Bharti PK, Shukla MM, et al. Clinical and molecular monitoring of Plasmodium falciparum resistance to antimalarial drug (artesunate+sulphadoxine-pyrimethamine) in two highly malarious district of Madhya Pradesh, Central India from 2012-2014[J]. Pathog Glob Health, 2017,111(4):186-194.
doi: 10.1080/20477724.2017.1331875 pmid: 28549390 |
[43] |
Wang Z, Shrestha S, Li X, et al. Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China-Myanmar border in 2007—2012[J]. Malar J, 2015,14:168.
doi: 10.1186/s12936-015-0672-9 |
[44] |
Demas AR, Sharma AI, Wong W, et al. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility[J]. Proc Natl Acad Sci USA, 2018,115(50):12799-12804.
doi: 10.1073/pnas.1812317115 |
[45] |
Mukherjee A, Bopp S, Magistrado P, et al. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia[J]. Malar J, 2017,16:195.
doi: 10.1186/s12936-017-1845-5 |
[46] | Xie SC, Dogovski C, Hanssen E, et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins[J]. J Cell Sci, 2016,129(2):406-416. |
[47] |
Mok S, Ashley EA, Ferreira PE, et al. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance[J]. Science, 2015,347(6220):431-435.
doi: 10.1126/science.1260403 |
[48] |
Dogovski C, Xie SC, Burgio G, et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance[J]. PLoS Biol, 2015,13(4):e1002132.
doi: 10.1371/journal.pbio.1002132 |
[49] |
Bhattacharjee S, Stahelin RV, Speicher KD, et al. Endoplasmic Reticulum PI(3)P lipid binding targets malaria proteins to the host cell[J]. Cell, 2012,148(1/2):201-212.
doi: 10.1016/j.cell.2011.10.051 |
[50] |
Mbengue A, Bhattacharjee S, Pandharkar T, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria[J]. Nature, 2015,520(7549):683-687.
doi: 10.1038/nature14412 |
[51] |
Kirchner S, Power BJ, Waters AP. Recent advances in malaria genomics and epigenomics[J]. Genome Med, 2016,8(1):92.
doi: 10.1186/s13073-016-0343-7 |
[52] |
White LJ, Flegg JA, Phyo AP, et al. Defining the in vivo phenotype of artemisinin-resistant falciparum malaria: a modelling approach[J]. PLoS Med, 2015,12(4):e1001823.
doi: 10.1371/journal.pmed.1001823 |
[53] |
Mwaiswelo R, Ngasala B, Jovel I, et al. Prevalence of and risk factors associated with polymerase chain reaction-determined Plasmodium falciparum positivity on day 3 after initiation of artemether-lumefantrine treatment for uncomplicated malaria in bagamoyo district, Tanzania[J]. Am J Trop Med Hyg, 2019,100(5):1179-1186.
doi: 10.4269/ajtmh.18-0729 |
[54] |
Chang HH, Meibalan E, Zelin J, et al. Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda[J]. Sci Rep, 2016,6:26330.
doi: 10.1038/srep26330 |
[55] | Zhang YL, Pan WQ. Research progress on artemisinin resistance in Plasmodium falciparum[J]. Chin J Parasitol Parasit Dis, 2015,33(6):418-424. (in Chinese) |
( 张逸龙, 潘卫庆. 恶性疟原虫对青蒿素产生抗性的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(6):418-424.) | |
[56] |
Checkley AM, Whitty CJM. Artesunate, artemether or quinine in severe Plasmodium falciparum malaria[J]. Expert Rev Anti-Infect Ther, 2007,5(2):199-204.
doi: 10.1586/14787210.5.2.199 |
[57] | Esu EB, Effa EE, Opie ON,, et al. Artemether for severe malaria[J]. Cochrane Database Syst Rev, 2019,6:CD010678. |
[58] |
Karbwang J, Na-Bangchang K, Congpuong K, et al. Pharmacokinetics and bioavailability of oral and intramuscular artemether[J]. Eur J Clin Pharmacol, 1997,52(4):307-310.
pmid: 9248770 |
[59] |
Adeel AA, Saeed NA, Aljasari A, et al. High efficacy of two artemisinin-based combinations: artesunate+sulfadoxine-pyrime-thamine and artemether-lumefantrine for falciparum malaria in Yemen[J]. Malar J, 2015,14:1-9.
doi: 10.1186/1475-2875-14-1 |
[60] |
West African Network for Clinical Trials of Antimalarial Drugs (WANECAM). Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial[J]. Lancet, 2018,391(10128):1378-1390.
doi: 10.1016/S0140-6736(18)30291-5 |
[61] |
Byakika-Kibwika P, Ssenyonga R, Lamorde M, et al. Piperaquine concentration and malaria treatment outcomes in Ugandan children treated for severe malaria with intravenous artesunate or quinine plus dihydroartemisinin-piperaquine[J]. BMC Infect Dis, 2019,19(1):1025.
doi: 10.1186/s12879-019-4647-2 pmid: 31795967 |
[62] |
Adegbite BR, Edoa JR, Honkpehedji YJ, et al. Monitoring of efficacy, tolerability and safety of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Lambaréné, Gabon: An open-label clinical trial[J]. Malar J, 2019,18:424.
doi: 10.1186/s12936-019-3015-4 |
[63] |
van der Pluijm RW, Tripura R, Hoglund RM, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial[J]. Lancet, 2020,395(10233):1345-1360.
doi: S0140-6736(20)30552-3 pmid: 32171078 |
[64] | Mendes JM, Ouermi L, Meissner P, et al. Safety and efficacy of artesunate-amodiaquine combined with either methylene blue or primaquine in children with falciparum malaria in Burkina Faso: a randomized controlled trial[J]. PLoS One, 2019,14(10):e222993. |
[65] | Wu YW, He SJ, Bai BX, et al. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation[J]. Cell Mol Immunol, 2016,13(3):379-390. |
[66] |
Wu X, Zhang W, Shi X, et al. Therapeutic effect of artemisinin on lupus nephritis mice and its mechanisms[J]. Acta Biochim Biophys Sin (Shanghai), 2010,42(12):916-923.
doi: 10.1093/abbs/gmq101 |
[67] |
Wu YW, He SJ, Bai BX, et al. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation[J]. Cell Mol Immunol, 2016,13(3):379-390.
doi: 10.1038/cmi.2015.13 |
[68] |
Krishna S, Ganapathi S, Ster IC, et al. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer[J]. EBioMedicine, 2015,2(1):82-90.
doi: 10.1016/j.ebiom.2014.11.010 |
[69] |
König M, von Hagens C, Hoth S, et al. Erratum to: Investigation of ototoxicity of artesunate as add-on therapy in patients with metastatic or locally advanced breast cancer: new audiological results from a prospective, open, uncontrolled, monocentric phase I study[J]. Cancer Chemother Pharmacol, 2016,77(6):1321.
doi: 10.1007/s00280-016-3023-9 |
[70] | Gao JJ, Tian ZX, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies[J]. Biosci Trends, 2020,14(1):72-73. |
[71] |
Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State[J]. JAMA, 2020,323(24):2493-2502.
doi: 10.1001/jama.2020.8630 pmid: 32392282 |
[72] |
Li X, Zhang C, Liu L, et al. Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases[J]. FASEB J, 2020,34(5):6008-6016.
doi: 10.1096/fsb2.v34.5 |
[73] |
Talman AM, Clain J, Duval R, et al. Artemisinin bioactivity and resistance in malaria parasites[J]. Trends Parasitol, 2019,35(12):953-963.
doi: 10.1016/j.pt.2019.09.005 |
[74] |
Skinner-Adams TS, Fisher GM, Riches AG, et al. Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone[J]. Commun Biol, 2019,2:166.
doi: 10.1038/s42003-019-0397-3 pmid: 31925039 |
[75] |
Kojom Foko LP, Eya’ane Meva F, Eboumbou Moukoko CE, et al. A systematic review on anti-malarial drug discovery and antiplasmodial potential of green synjournal mediated metal nanoparticles: overview, challenges and future perspectives[J]. Malar J, 2019,18(1):337.
doi: 10.1186/s12936-019-2974-9 |
[76] |
White NJ, Pukrittayakamee S, Phyo AP, et al. Spiroindolone KAE609 for falciparum and vivax malaria[J]. N Engl J Med, 2014,371(5):403-410.
doi: 10.1056/NEJMoa1315860 |
[77] | Dennis ASM, Lehane AM, Ridgway MC, et al. Cell swelling induced by the antimalarial KAE609 (cipargamin) and other PfATP4-associated antimalarials[J]. Antimicrob Agents Chemother, 2018,62(6):e00087-e00018. |
[1] | 史光忠, 张海亭, 王蒴, 何海波, 程侠, 买买提江·吾买尔, 于琳, 阿衣夏木·克尤木, 赵江山. 新冠肺炎流行期间新疆报告输入性卵形疟1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 689-691. |
[2] | 国家传染病医学中心撰写组. 疟疾诊疗指南[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 419-427. |
[3] | 黄媛媛, 姚世杰, 卞致芳, 温易鑫, 郑丽, 曹雅明. 地塞米松对实验性脑型疟小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 446-453. |
[4] | 曹磊, 马琳, 朱妮, 张义, 王安礼, 王舒, 李欣欣. 2011—2020年陕西省疟疾流行特征[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 454-459. |
[5] | 葛洁云, 刘蕾, 孙毅凡, 程洋. 疟原虫纳虫空泡膜功能及其相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 402-410. |
[6] | 张丽, 易博禹, 夏志贵, 尹建海. 2021年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 135-139. |
[7] | 蒋永茂, 高涵, 王四宝. 疟疾防控新策略:利用按蚊肠道共生菌阻断疟原虫传播[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 140-145. |
[8] | 柳素珍, 纪锋颖, 石李梅. 青岛市新型冠状病毒肺炎隔离点输入性疟疾病例的调查[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 261-265. |
[9] | 刘闯, 司雯雯, 张尹, 刘蓉, 刘毅, 欧阳瑞镯, 孙军. 青蒿素类药物的广谱性及其潜在作用机制的探讨[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 114-120. |
[10] | 田斌, 廖瑜, 文岚, 肖芳, 张兵, 申晓君. 长沙市122例输入性恶性疟原虫多药抗性基因1拷贝数变异分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 127-131. |
[11] | 夏志贵, 丰俊, 张丽, 冯欣宇, 黄芳, 尹建海, 周水森, 周升, 杨恒林, 王善青, 高琪, 汤林华, 严俊. 中国消除疟疾:监测响应系统的实施与成效分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 733-740. |
[12] | 冯宁宁, 陶薇, 冯彤, 甄素娟, 李军, 刘洪斌. 2011—2019年河北省疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 786-793. |
[13] | 崔延雯, 黄芳, 尹建海, 夏志贵. 疟疾控制与消除中血清学监测方法的研究与应用进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 836-841. |
[14] | 夏菁, 吴冬妮, 朱红, 万伦, 张娟, 林文, 李凯杰, 曹慕民, 刘斯, 张华勋. 湖北省疟疾控制和消除历程[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 565-571. |
[15] | 吴冬妮, 张华勋, 朱红, 万伦, 张娟, 孙凌聪, 董小蓉, 易佳, 曹慕民, 夏菁. 2016—2020年湖北省输入性疟疾病例特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 585-591. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||