[1] | World Health Organization. World Malaria Report 2020[R]. Geneva: WHO, 2020. | [2] | Tu Y. Artemisinin--a gift from traditional Chinese medicine to the world (Nobel lecture)[J]. Angew Chem Int Ed Engl, 2016,55(35):10210-10226. | [3] | Ashley EA, Phyo AP. Drugs in development for malaria[J]. Drugs, 2018,78(9):861-879. | [4] | Tu YY. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine[J]. Nat Med, 2011,17(10):1217-1220. | [5] | Balint GA. Artemisinin and its derivatives: an important new class of antimalarial agents[J]. Pharmacol Ther, 2001,90(2/3):261-265. | [6] | Li Y, Zhang HB, Ye YP. Synjournal of esters of dihydroartemisinin and 11, 12-dihydroxyartemisinin[J]. Chin J Med Chem, 1995,5(2):127-130. (in Chinese) | [6] | ( 李英, 张惠斌, 叶云鹏. 二氢青蒿素和11-羟基二氢青蒿素的酯类衍生物的合成[J]. 中国药物化学杂志, 1995,5(2):127-130.) | [7] | Li XF, Xia DL, Liu GZ, et al. Optimal preparation process of artemether by orthogonal experiments[J]. Exp Sci Technol, 2008,6(2):36-38. (in Chinese) | [7] | ( 李雪芳, 夏都灵, 刘国柱, 等. 双氢青蒿素醚化法制备蒿甲醚的工艺优化[J]. 实验科学与技术, 2008,6(2):36-38.) | [8] | Ploypradith P. Development of artemisinin and its structurally simplified trioxane derivatives as antimalarial drugs[J]. Acta Trop, 2004,89(3):329-342. | [9] | Gomes M, Ribeiro I, Warsame M, et al. Rectal artemisinins for malaria: a review of efficacy and safety from individual patient data in clinical studies[J]. BMC Infect Dis, 2008,8:39. | [10] | Tiwari MK, Chaudhary S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side: chronological advancements and future challenges[J]. Med Res Rev, 2020,40(4):1220-1275. | [11] | World Health Organization. Guidelines for the treatment of malaria[M]. Geneva: World Health Organization, 2010. | [12] | World Health Organization. Guidelines for the treatment of malaria[M]. Geneva: World Health Organization, 2015. | [13] | Kabanywanyi AM, Mwita A, Sumari D, et al. Efficacy and safety of artemisinin-based antimalarial in the treatment of uncomplicated malaria in children in southern Tanzania[J]. Malar J, 2007,6:146. | [14] | Li J, Wu LO, Yang ZQ. Comparison of efficacy of artemisinin antimalarials and combined use the drugs[J]. Chin Trop Med, 2009,9(1):157-159, 195. (in Chinese) | [14] | ( 李佳, 吴兰鸥, 杨照青. 青蒿素类抗疟药药效的比较及联合用药[J]. 中国热带医学, 2009,9(1):157-159, 195.) | [15] | Sun C, Li J, Cao Y, et al. Two distinct and competitive pathways confer the cellcidal actions of artemisinins[J]. Microb Cell, 2015,2(1):14-25. | [16] | Antoine T, Fisher N, Amewu R, et al. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential[J]. J Antimicrob Chemother, 2014,69(4):1005-1016. | [17] | Olliaro PL, Haynes RK, Meunier B, et al. Possible modes of action of the artemisinin-type compounds[J]. Trends Parasitol, 2001,17(3):122-126. | [18] | Haynes RK, Ho WY, Chan HW, et al. Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity[J]. Angew Chem Int Ed Engl, 2004,43(11):1381-1385. | [19] | Haynes RK, Chan WC, Lung CM, et al. The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates[J]. Chem Med Chem, 2007,2(10):1480-1497. | [20] | Stocks PA, Bray PG, Barton VE, et al. Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs[J]. Angew Chem Int Ed Engl, 2007,46(33):6278-6283. | [21] | Gunjan S, Sharma T, Yadav K, et al. Artemisinin derivatives and synthetic trioxane trigger apoptotic cell death in asexual stages of Plasmodium[J]. Front Cell Infect Microbiol, 2018,8:256. | [22] | Eichhorn T, Winter D, Büchele B, et al. Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum[J]. Biochem Pharmacol, 2013,85(1):38-45. | [23] | Eckstein-Ludwig U, Webb RJ, van Goethem IDA, et al. Artemisinins target the of Plasmodium falciparum[J]. Nature, 2003,424(6951):957-961. | [24] | Wang JG, Zhang CJ, Chia WN, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum[J]. Nat Commun, 2015,6:10111. | [25] | World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy 2019[M/OL]. World Health Organization, 2019. https://www.who.int/docs/default-source/documents/publications/gmp/who-cds-gmp-2019-17-eng.pdf?ua=1 | [26] | Chhibber-Goel J, Sharma A. Profiles of Kelch mutations in Plasmodium falciparum across South Asia and their implications for tracking drug resistance[J]. Int J Parasitol Drugs Drug Resist, 2019,11:49-58. | [27] | Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western Cambodia[J]. N Engl J Med, 2008,359(24):2619-2620. | [28] | Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2009,361(5):455-467. | [29] | Wang JG, Xu CC, Liao FL, et al. A temporizing solution to “artemisinin resistance”[J]. N Engl J Med, 2019,380(22):2087-2089. | [30] | Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2014,371(5):411-423. | [31] | White NJ. Artemisinin resistance--the clock is ticking[J]. Lancet, 2010,376(9758):2051-2052. | [32] | Imwong M, Suwannasin K, Kunasol C, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study[J]. Lancet Infect Dis, 2017,17(5):491-497. | [33] | Rosenthal PJ. The interplay between drug resistance and fitness in malaria parasites[J]. Mol Microbiol, 2013,89(6):1025-1038. | [34] | Lu F, Culleton R, Zhang M, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa[J]. N Engl J Med, 2017,376(10):991-993. | [35] | Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria[J]. Microbiol Spectr, 2016,4(3): 10.1128/microbiolspec.EI10-0013-2016. | [36] | World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy[M/OL]. World Health Organization, 2018. https://www.who.int/malaria/publications/atoz/artemisinin-resistance-august2018/en/. | [37] | Coppée R, Jeffares DC, Miteva MA, et al. Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13[J]. Sci Rep, 2019,9(1):10675. | [38] | Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014,505(7481):50-55. | [39] | Phyo A P, Ashley E A, Anderson T, et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003—2013): the role of parasite genetic factors[J]. Clin Infect Dis, 2016,63(6):784-791. | [40] | Ye R, Hu D, Zhang Y, et al. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China-Myanmar border[J]. Sci Rep, 2016,6:20100. | [41] | Uwimana A, Legrand E, Stokes BH, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda[J]. Nat Med, 2020,26(10):1602-1608. | [42] | Mishra S, Bharti PK, Shukla MM, et al. Clinical and molecular monitoring of Plasmodium falciparum resistance to antimalarial drug (artesunate+sulphadoxine-pyrimethamine) in two highly malarious district of Madhya Pradesh, Central India from 2012-2014[J]. Pathog Glob Health, 2017,111(4):186-194. | [43] | Wang Z, Shrestha S, Li X, et al. Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China-Myanmar border in 2007—2012[J]. Malar J, 2015,14:168. | [44] | Demas AR, Sharma AI, Wong W, et al. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility[J]. Proc Natl Acad Sci USA, 2018,115(50):12799-12804. | [45] | Mukherjee A, Bopp S, Magistrado P, et al. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia[J]. Malar J, 2017,16:195. | [46] | Xie SC, Dogovski C, Hanssen E, et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins[J]. J Cell Sci, 2016,129(2):406-416. | [47] | Mok S, Ashley EA, Ferreira PE, et al. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance[J]. Science, 2015,347(6220):431-435. | [48] | Dogovski C, Xie SC, Burgio G, et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance[J]. PLoS Biol, 2015,13(4):e1002132. | [49] | Bhattacharjee S, Stahelin RV, Speicher KD, et al. Endoplasmic Reticulum PI(3)P lipid binding targets malaria proteins to the host cell[J]. Cell, 2012,148(1/2):201-212. | [50] | Mbengue A, Bhattacharjee S, Pandharkar T, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria[J]. Nature, 2015,520(7549):683-687. | [51] | Kirchner S, Power BJ, Waters AP. Recent advances in malaria genomics and epigenomics[J]. Genome Med, 2016,8(1):92. | [52] | White LJ, Flegg JA, Phyo AP, et al. Defining the in vivo phenotype of artemisinin-resistant falciparum malaria: a modelling approach[J]. PLoS Med, 2015,12(4):e1001823. | [53] | Mwaiswelo R, Ngasala B, Jovel I, et al. Prevalence of and risk factors associated with polymerase chain reaction-determined Plasmodium falciparum positivity on day 3 after initiation of artemether-lumefantrine treatment for uncomplicated malaria in bagamoyo district, Tanzania[J]. Am J Trop Med Hyg, 2019,100(5):1179-1186. | [54] | Chang HH, Meibalan E, Zelin J, et al. Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda[J]. Sci Rep, 2016,6:26330. | [55] | Zhang YL, Pan WQ. Research progress on artemisinin resistance in Plasmodium falciparum[J]. Chin J Parasitol Parasit Dis, 2015,33(6):418-424. (in Chinese) | [55] | ( 张逸龙, 潘卫庆. 恶性疟原虫对青蒿素产生抗性的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(6):418-424.) | [56] | Checkley AM, Whitty CJM. Artesunate, artemether or quinine in severe Plasmodium falciparum malaria[J]. Expert Rev Anti-Infect Ther, 2007,5(2):199-204. | [57] | Esu EB, Effa EE, Opie ON,, et al. Artemether for severe malaria[J]. Cochrane Database Syst Rev, 2019,6:CD010678. | [58] | Karbwang J, Na-Bangchang K, Congpuong K, et al. Pharmacokinetics and bioavailability of oral and intramuscular artemether[J]. Eur J Clin Pharmacol, 1997,52(4):307-310. | [59] | Adeel AA, Saeed NA, Aljasari A, et al. High efficacy of two artemisinin-based combinations: artesunate+sulfadoxine-pyrime-thamine and artemether-lumefantrine for falciparum malaria in Yemen[J]. Malar J, 2015,14:1-9. | [60] | West African Network for Clinical Trials of Antimalarial Drugs (WANECAM). Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial[J]. Lancet, 2018,391(10128):1378-1390. | [61] | Byakika-Kibwika P, Ssenyonga R, Lamorde M, et al. Piperaquine concentration and malaria treatment outcomes in Ugandan children treated for severe malaria with intravenous artesunate or quinine plus dihydroartemisinin-piperaquine[J]. BMC Infect Dis, 2019,19(1):1025. | [62] | Adegbite BR, Edoa JR, Honkpehedji YJ, et al. Monitoring of efficacy, tolerability and safety of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Lambaréné, Gabon: An open-label clinical trial[J]. Malar J, 2019,18:424. | [63] | van der Pluijm RW, Tripura R, Hoglund RM, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial[J]. Lancet, 2020,395(10233):1345-1360. | [64] | Mendes JM, Ouermi L, Meissner P, et al. Safety and efficacy of artesunate-amodiaquine combined with either methylene blue or primaquine in children with falciparum malaria in Burkina Faso: a randomized controlled trial[J]. PLoS One, 2019,14(10):e222993. | [65] | Wu YW, He SJ, Bai BX, et al. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation[J]. Cell Mol Immunol, 2016,13(3):379-390. | [66] | Wu X, Zhang W, Shi X, et al. Therapeutic effect of artemisinin on lupus nephritis mice and its mechanisms[J]. Acta Biochim Biophys Sin (Shanghai), 2010,42(12):916-923. | [67] | Wu YW, He SJ, Bai BX, et al. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation[J]. Cell Mol Immunol, 2016,13(3):379-390. | [68] | Krishna S, Ganapathi S, Ster IC, et al. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer[J]. EBioMedicine, 2015,2(1):82-90. | [69] | König M, von Hagens C, Hoth S, et al. Erratum to: Investigation of ototoxicity of artesunate as add-on therapy in patients with metastatic or locally advanced breast cancer: new audiological results from a prospective, open, uncontrolled, monocentric phase I study[J]. Cancer Chemother Pharmacol, 2016,77(6):1321. | [70] | Gao JJ, Tian ZX, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies[J]. Biosci Trends, 2020,14(1):72-73. | [71] | Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State[J]. JAMA, 2020,323(24):2493-2502. | [72] | Li X, Zhang C, Liu L, et al. Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases[J]. FASEB J, 2020,34(5):6008-6016. | [73] | Talman AM, Clain J, Duval R, et al. Artemisinin bioactivity and resistance in malaria parasites[J]. Trends Parasitol, 2019,35(12):953-963. | [74] | Skinner-Adams TS, Fisher GM, Riches AG, et al. Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone[J]. Commun Biol, 2019,2:166. | [75] | Kojom Foko LP, Eya’ane Meva F, Eboumbou Moukoko CE, et al. A systematic review on anti-malarial drug discovery and antiplasmodial potential of green synjournal mediated metal nanoparticles: overview, challenges and future perspectives[J]. Malar J, 2019,18(1):337. | [76] | White NJ, Pukrittayakamee S, Phyo AP, et al. Spiroindolone KAE609 for falciparum and vivax malaria[J]. N Engl J Med, 2014,371(5):403-410. | [77] | Dennis ASM, Lehane AM, Ridgway MC, et al. Cell swelling induced by the antimalarial KAE609 (cipargamin) and other PfATP4-associated antimalarials[J]. Antimicrob Agents Chemother, 2018,62(6):e00087-e00018. |
|