[1] | Plutzer J, Karanis P. Genetic polymorphism in Cryptosporidium species: an update[J]. Vet Parasitol, 2009, 165(3/4): 187-199. | [2] | Striepen B. Parasitic infections: time to tackle cryptosporidiosis[J]. Nature, 2013, 503(7475): 189-191. | [3] | O’Donoghue PJ. Cryptosporidium and cryptosporidiosis in man and animals[J]. Int J Parasitol, 1995, 25(2): 139-195. | [4] | Farthing MJ. Clinical aspects of human cryptosporidiosis[J]. Contrib Microbiol, 2000, 6: 50-74. | [5] | Chen XM, Keithly JS, Paya CV, et al. Cryptosporidiosis[J]. N Engl J Med, 2002, 346(22): 1723-1731. | [6] | GBD diarrhoeal diseases collaborators. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the global burden of disease study 2015[J]. Lancet Infect Dis, 2017, 17(9): 909-948. | [7] | Shaw MK. Cell invasion by Theileria sporozoites[J]. Trends Parasitol, 2003, 19(1): 2-6. | [8] | O’Hara SP, Huang BQ, Chen XM, et al. Distribution of Cryptosporidium parvum sporozoite apical organelles during attachment to and internalization by cultured biliary epithelial cells[J]. J Parasitol, 2005, 91(5): 995-999. | [9] | Kaiko GE, Stappenbeck TS. Host-microbe interactions shaping the gastrointestinal environment[J]. Trends Immunol, 2014, 35(11): 538-548. | [10] | Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14(3): 141-153. | [11] | Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis[J]. Exp Mol Med, 2017, 49(5): e338. | [12] | Muñoz M, Eidenschenk C, Ota N, et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection[J]. Immunity, 2015, 42(2): 321-331. | [13] | Garcia-Carbonell R, Yao SJ, Das S, et al. Dysregulation of intestinal epithelial cell RIPK pathways promotes chronic inflammation in the IBD gut[J]. Front Immunol, 2019, 10: 1094. | [14] | Lantier L, Lacroix-Lamandé S, Potiron L, et al. Intestinal CD103+ dendritic cells are key players in the innate immune control of Cryptosporidium parvum infection in neonatal mice[J]. PLoS Pathog, 2013, 9(12): e1003801. | [15] | Ming ZP, Wang Y, Gong AY, et al. Attenuation of intestinal epithelial cell migration during Cryptosporidium parvum infection involves parasite Cdg7_FLc_1030 RNA-mediated induction and release of dickkopf-1[J]. J Infect Dis, 2018, 218(8): 1336-1347. | [16] | Ming ZP, Gong AY, Wang Y, et al. Trans-suppression of host CDH3 and LOXL4 genes during Cryptosporidium parvum infection involves nuclear delivery of parasite Cdg7_FLc_1000 RNA[J]. Int J Parasitol, 2018, 48(6): 423-431. | [17] | Clemson CM, Hutchinson JN, Sara SA, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles[J]. Mol Cell, 2009, 33(6): 717-726. | [18] | Yamazaki T, Souquere S, Chujo T, et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation[J]. Mol Cell. 2018; 70(6): 1038-1053.e7. | [19] | Nakagawa S, Naganuma T, Shioi G, et al. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice[J]. J Cell Biol, 2011, 193(1): 31-39. | [20] | Fox AH, Nakagawa S, Hirose T, et al. Paraspeckles: where long noncoding RNA meets phase separation[J]. Trends Biochem Sci 2018, 43(2): 124-135. | [21] | Wang L, Qu P, Yin WL, et al. Lnc-NEAT1 induces cell apoptosis and inflammation but inhibits proliferation in a cellular model of hepatic ischemia/reperfusion injury[J]. J Int Med Res, 2021, 49(3): 300060519887251. | [22] | Liu ZH, Lu T, Liu SM, et al. Long non-coding RNA NEAT1 contributes to lipopolysaccharide-induced inflammation and apoptosis of human middle ear epithelial cells via regulating the miR-301b-3p/TLR4 axis[J]. Exp Ther Med, 2021, 22(6): 1360. | [23] | Wang ZQ, Li K, Huang WR. Long non-coding RNA NEAT1-centric gene regulation[J]. Cell Mol Life Sci, 2020, 77(19): 3769-3779. | [24] | Chen Y, Qiu JL, Chen B, et al. RETRACTED: long non-coding RNA NEAT1 plays an important role in Sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-κB pathway[J]. Int Immunopharm, 2018, 59: 252-260. | [25] | Zhang P, Cao L, Zhou R, et al. The lncRNA NEAT1 promotes activation of inflammasomes in macrophages[J]? Nat Commun, 2019, 10(1): 1495. | [26] | Zhang FF, Shen N, Tang YJ. Identification LncRNA NEAT1 as a new mediator of the TLR2-induced cytokine production[J]. Current Immunol, 2015, 35(4): 316-321. (in Chinese) | | ( 张飞飞, 沈南, 唐元家. LncRNA NEAT1参与TLR2介导的炎症因子的表达[J]. 现代免疫学, 2015, 35(4): 316-321.) | [27] | Li J, Moran T, Swanson E, et al. Regulation of IL-8 and IL-1beta expression in Crohn’s disease associated NOD2/CARD15 mutations[J]. Hum Mol Genet, 2004, 13(16): 1715-1725. | [28] | Matson JP, Dumitru R, Coryell P, et al. Rapid DNA replication origin licensing protects stem cell pluripotency[J]. eLife, 2017, 6: e30473. | [29] | Zeng CW, Liu SC, Lu S, et al. The c-myc-regulated lncRNA NEAT1 and paraspeckles modulate imatinib-induced apoptosis in CML cells[J]. Mol Cancer, 2018, 17(1): 130. | [30] | Yu X, Li Z, Zheng HY, et al. NEAT1: a novel cancer-related long non-coding RNA[J]. Cell Prolif, 2017, 50(2): e12329. | [31] | Li WJ, Zhang ZH, Liu XH, et al. The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer[J]. J Clin Invest, 2017, 127(9): 3421-3440. | [32] | Zhang J, Guo S, Piao HY, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1[J]. J Physiol Biochem, 2019, 75(3): 379-389. | [33] | Zeng CW, Xu Y, Xu L, et al. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells[J]. BMC Cancer, 2014, 14: 693. | [34] | Imamura K, Imamachi N, Akizuki G, et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL-8 expression upon immune stimuli[J]. Mol Cell, 2014, 53(3): 393-406. |
|