[1] | Gao H,, Cui C,, Wang L, et al. Mosquito microbiota and implications for disease control[J]. Trends Parasitol, 2020, 36(2): 98-111. | [2] | World Health Organization. World malaria report 2021[R]. Geneva: WHO, 2021. | [3] | Feng J,, Zhou SS. From control to elimination: the historical retrospect of malaria control and prevention in China[J]. Chin J Parasitol Parasit Dis, 2019, 37(5): 505-513. (in Chinese) | [3] | (丰俊,, 周水森. 从控制走向消除:我国疟疾防控的历史回顾[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(5): 505-513.) | [4] | Feng J,, Zhang L,, Xia ZG, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 421-428. (in Chinese) | [4] | (丰俊,, 张丽,, 夏志贵, 等. 中国消除疟疾: 重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421-428.) | [5] | Greenwood BM,, Fidock DA,, Kyle DE, et al. Malaria: progress, perils, and prospects for eradication[J]. J Clin Invest, 2008, 118(4): 1266-1276. | [6] | Sougoufara S,, Ottih EC,, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities[J]. Parasit Vectors, 2020, 13(1): 295. | [7] | Achan J,, Talisuna AO,, Erhart A, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria[J]. Malar J, 2011, 10: 144. | [8] | Tyagi RK,, Gleeson PJ,, Arnold L, et al. High-level artemisinin-resistance with quinine co-resistance emerges in P. falciparum malaria under in vivo artesunate pressure[J]. BMC Med, 2018, 16(1): 181. | [9] | Dhorda M,, Amaratunga C,, Dondorp AM. Artemisinin and multidrug-resistant Plasmodium falciparum: a threat for malaria control and elimination[J]. Curr Opin Infect Dis, 2021, 34(5): 432-439. | [10] | Noreen N,, Ullah A,, Salman SM, et al. New insights into the spread of resistance to artemisinin and its analogues[J]. J Glob Antimicrob Re, 2021, 27: 142-149. | [11] | Laurens MB. RTS,S/AS01 vaccine (Mosquirix): an overview[J]. Hum Vaccin Immunother, 2020, 16(3): 480-489. | [12] | Wang SB,, Jacobs-Lorena M. Genetic approaches to interfere with malaria transmission by vector mosquitoes[J]. Trends Biotechnol, 2013, 31(3): 185-193. | [13] | Whitten MM,, Shiao SH,, Levashina EA. Mosquito midguts and malaria: cell biology, compartmentalization and immunology[J]. Parasite Immunol, 2006, 28(4): 121-130. | [14] | Wang S,, Dos-Santos ALA,, Huang W, et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria[J]. Science, 2017, 357(6358): 1399-1402. | [15] | Cirimotich CM,, Dong Y,, Clayton AM, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae[J]. Science, 2011, 332(6031): 855-858. | [16] | Gao H,, Bai L,, Jiang Y, et al. A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase[J]. Nat Microbiol, 2021, 6(6): 806-817. | [17] | Bando H,, Okado K,, Guelbeogo WM, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity[J]. Sci Rep, 2013, 3: 1641. | [18] | Bai L,, Wang LL,, Vega-Rodriguez J, et al. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses[J]. Front Microbiol, 2019, 10(1580): 1-11. | [19] | Wang S,, Jacobs-Lorena M. Arthropod vector: controller of disease transmission[M]. Salt Lake City: American Academic Press, 2017: 219-234. | [20] | Yoshida S,, Ioka D,, Matsuoka H, et al. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes[J]. Mol Biochem Parasitol, 2001, 113(1): 89-96. | [21] | Wang S,, Ghosh AK,, Bongio N, et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes[J]. Proc Natl Acad Sci USA, 2012, 109(31): 12734-12743. | [22] | Abraham EG,, Jacobs-Lorena M. Mosquito midgut barriers to malaria parasite development[J]. Insect Biochem Mol Biol, 2004, 34(7): 667-671. | [23] | Drexler AL,, Vodovotz Y,, Luckhart S. Plasmodium development in the mosquito: biology bottlenecks and opportunities for mathematical modeling[J]. Trends Parasitol, 2008, 24(8): 333-336. | [24] | Stanczyk NM,, Mescher MC,, De Moraes CM. Effects of malaria infection on mosquito olfaction and behavior: extrapolating data to the field[J]. Curr Opin Insect Sci, 2017, 20: 7-12. | [25] | Fang WG,, Vega-Rodriguez J,, Ghosh AK, et al. Development of transgenic fungi that kill human malaria parasites in mosquitoes[J]. Science, 2011, 331(6020): 1074-1077. | [26] | Jaynes JM,, Burton CA,, Barr SB, et al. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi[J]. FASEB J, 1988, 2(13): 2878-2883. | [27] | Possani L D,, Zurita M,, Delepierre M, et al. From noxiustoxin to Shiva-3, a peptide toxic to the sporogonic development of Plasmodium berghei[J]. Toxicon, 1998, 36(11): 1683-1692. | [28] | Gwadz RW,, Kaslow D,, Lee JY, et al. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes[J]. Infect Immun, 1989, 57(9): 2628-2633. | [29] | Vizioli J,, Bulet P,, Hoffmann J A, et al. Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2001, 98(22): 12630-12635. | [30] | Ghosh AK,, Coppens I,, Gardsvoll H, et al. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut[J]. Proc Natl Acad Sci USA, 2011, 108(41): 17153-17161. | [31] | Ghosh AK,, Ribolla PE,, Jacobs-Lorena M. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library[J]. Proc Natl Acad Sci USA, 2001, 98(23): 13278-13281. | [32] | Riehle MA,, Moreira CK,, Lampe D, et al. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut[J]. Int J Parasitol, 2007, 37(6): 595-603. | [33] | Vega-Rodriguez J,, Ghosh AK,, Kanzok SM, et al. Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut[J]. Proc Natl Acad Sci USA, 2014, 111(4): E492-500. | [34] | Ito J,, Ghosh A,, Moreira LA, et al. Transgenic Anopheline mosquitoes impaired in transmission of a malaria parasite[J]. Nature, 2002, 417(6887): 452-457. | [35] | Bhatnagar RK,, Arora N,, Sachidanand S, et al. Synthetic propeptide inhibits mosquito midgut chitinase and blocks sporogonic development of malaria parasite[J]. Biochem Biophys Res Commun, 2003, 304(4): 783-787. | [36] | Li FW,, Patra KP,, Vinetz JM. An anti-chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito[J]. J Infect Dis, 2005, 192(5): 878-887. | [37] | Shane JL,, Grogan CL,, Cwalina C, et al. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota[J]. Nat Commun, 2018, 9(1): 4127. |
|