[1] | Zhang L, Feng J, Xia ZG, et al. Epidemiological characteristics of malaria and progress on its elimination in China in 2019[J]. Chin J Parasitol Parasit Dis, 2020,38(2):133-138. (in Chinese) | [1] | ( 张丽, 丰俊, 夏志贵, 等. 2019年全国疟疾疫情特征分析及消除工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(2):133-138.) | [2] | World Health Organization. World Malaria Report 2019 [R]. Geneva: WHO, 2019. | [3] | Urban BC, Roberts DJ. Inhibition of T cell function during malaria: implications for immunology and vaccinology[J]. J Exp Med, 2003,197(2):137-141. | [4] | Rodrigues V, Cordeiro-da-Silva A, Laforge M, et al. Impairment of T cell function in parasitic infections[J]. PLoS Negl Trop Dis, 2014,8(2):e2567. | [5] | Wang J, Shen Y, Li Y, et al. Recent progress in immune checkpoint molecules in Plasmodium infection and immunity[J]. Chin J Parasitol Parasit Dis, 2019,37(4):472-480. (in Chinese) | [5] | ( 王军, 沈燕, 李悦, 等. 免疫检查点分子调控在疟原虫感染与免疫中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(4):472-480.) | [6] | Zheng W, Liu J, Meng DY, et al. Study on protective immunity against infection of Plasmodium yoelii 17XL in DBA/2 mice[J]. Chin J Parasitol Parasit Dis, 2006,24(1):4-18. (in Chinese) | [6] | ( 郑伟, 刘军, 孟冬娅, 等. 致死型约氏疟原虫感染DBA/2小鼠保护性免疫机制的研究[J]. 中国寄生虫学与寄生虫病杂志, 2006,24(1):4-18.) | [7] | Wykes MN, Horne-Debets JM, Leow CY, et al. Malaria drives T cells to exhaustion[J]. Front Microbiol, 2014,5:249. | [8] | Liu TP, Cheng XY, Ding Y, et al. PD-1 deficiency promotes TFH cells expansion in ITV-immunized mice by upregulating cytokines secretion[J]. Parasit Vect, 2018,11(1):397. | [9] | Hafalla JC, Claser C, Couper KN, et al. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology[J]. PLoS Pathog, 2012,8(2):e1002504. | [10] | Horne-Debets JM, Faleiro R, Karunarathne DS, et al. PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria[J]. Cell Rep, 2013,5(5):1204-1213. | [11] | Kumar R, Loughland JR, Ng SS, et al. The regulation of CD4+T cells during malaria[J]. Immunol Rev, 2020,293(1):70-87. | [12] | Dhangadamajhi G, Mohapatra BN, Kar SK, et al. The CCTTT pentanucleotide microsatellite in iNOS promoter influences the clinical outcome in P. falciparum infection[J]. Parasitol Res, 2009,104(6):1315-1320. | [13] | Enyindah-Asonye G, Nwankwo A, Rahman MA, et al. Overexpression of CD6 and PD-1 identifies dysfunctional CD8+ T-cells during chronic SIV infection of rhesus macaques[J]. Front Immunol, 2019,10:3005. | [14] | Deguit CDT, Hough M, Hoh R, et al. Some aspects of CD8+ T-cell exhaustion are associated with altered T-cell mitochondrial features and ROS content in HIV infection[J]. J Acquir Immune Defic Syndr, 2019,82(2):211-219. | [15] | Zhang C, Rong HM, Li T, et al. PD-1 deficiency promotes macrophage activation and T-helper cell type 1/T-helper cell type 17 response in Pneumocystis pneumonia[J]. Am J Respir Cell Mol Biol, 2020,62(6):767-782. | [16] | Fenwick C, Joo V, Jacquier P, et al. T-cell exhaustion in HIV infection[J]. Immunol Rev, 2019,292(1):149-163. | [17] | Horne-Debets JM, Faleiro R, Karunarathne DS, et al. PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria[J]. Cell Rep, 2013,5(5):1204-1213. | [18] | Zhuang Y, Liu C, Liu J, et al. Resistance mechanism of PD-1/PD-L1 blockade in the cancer-immunity cycle[J]. Onco Targets Ther, 2020,13:83-94. | [19] | Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production[J]. J Immunol, 2003,170(3):1257-1266. |
|