[1] | Yang DY, Yang GY. Research progress on rabbit cysticercosis[J]. China Animal Husb & Vet Med, 2015, 42(4): 1015-1020. (in Chinese) | | (杨德英, 杨光友. 兔豆状囊尾蚴病研究进展[J]. 中国畜牧兽医, 2015, 42(4): 1015-1020.) | [2] | Wang LJ, Wang LQ, Liu TL, et al. Polyclonal antibody preparation, tissue localization and activity of serine protease inhibitor serpin of Cysticercus pisiformis[J]. Chin J Parasitol Parasit Dis, 2020, 38(5): 595-601. (in Chinese) | | (王莉杰, 王立群, 刘婷丽, 等. 豆状囊尾蚴丝氨酸蛋白酶抑制剂(serpin)的多抗制备、组织分布及活性研究[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 595-601.) | [3] | Pan YQ, Kong LY, Li P, et al. Identification and 18S DNA sequence analysis of a new type no-hook Cysticercus pisiformis[J]. Chin J Animal Vet Sci, 2019, 50(11): 2283-2289. (in Chinese) | | (潘耀谦, 孔令芸, 李鹏, 等. 一种新型无钩豆状囊尾蚴的鉴定和18S DNA序列分析[J]. 畜牧兽医学报, 2019, 50(11): 2283-2289.) | [4] | Stancampiano L, Ravagnan S, Capelli G, et al. Cysticercosis by Taenia pisiformis in brown hare (Lepus europaeus) in northern Italy: epidemiologic and pathologic features[J]. Int J Parasitol Parasites Wildl, 2019, 9: 139-143. | [5] | Remesar S, Castro-Scholten S, Jiménez-Martín D, et al. Spatiotemporal monitoring of Cysticercus pisiformis in European wild rabbit (Oryctolagus cuniculus) in Mediterranean ecosystems in southern Spain[J]. Prev Vet Med, 2021, 197: 105508. | [6] | Hajipour N, Zavarshani M. Ectoparasites and endoparasites of New Zealand white rabbits from north west of Iran[J]. Iran J Parasitol, 2020, 15(2): 266-271. | [7] | Wang LQ. Characteristics of exosomes from Cysticercus pisiformis and their mechanism on regulating macrophage polarization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020: 2. (in Chinese) | | (王立群. 豆状囊尾蚴外泌体的特征及其对巨噬细胞极化的调节机制[D]. 北京: 中国农业科学院, 2020: 2.) | [8] | Tian QH. The changes of antibodies in rabbits infected with Cysticercus pisiformis[J]. Chin J Rabbit Farming, 2021(1): 12-15. (in Chinese) | | (田启会. 家兔感染豆状囊尾蚴后抗体的消长[J]. 中国养兔杂志, 2021(1): 12-15.) | [9] | Liu CL, Yang HR, Shi WY, et al. microRNA-mediated regulation of T helper type 17/regulatory T-cell balance in autoimmune disease[J]. Immunology, 2018, 155(4): 427-434. | [10] | Yadav SK, Pandey A, Sarkar S, et al. Identification of altered blood microRNAs and plasma proteins in a rat model of Parkinson’s disease[J]. Mol Neurobiol, 2022, 59(3): 1781-1798. | [11] | Zhao ZT, Zhu AN, Bhardwaj M, et al. Fecal microRNAs, fecal microRNA panels, or combinations of fecal microRNAs with fecal hemoglobin for early detection of colorectal cancer and its precursors: a systematic review[J]. Cancers, 2021, 14(1): 65. | [12] | Chen QL, Zhang JQ, Zheng T, et al. The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis[J]. Parasit Vectors, 2019, 12(1): 611. | [13] | Rouas R, Merimi M, Najar M, et al. Human CD8+ CD25+ CD127 low regulatory T cells: microRNA signature and impact on TGF-β and IL-10 expression[J]. J Cell Physiol, 2019, 234(10): 17459-17472. | [14] | Cheong JK, Tang YC, Zhou LH, et al. Advances in quantifying circulatory microRNA for early disease detection[J]. Curr Opin Biotechnol, 2022, 74: 256-262. | [15] | Tian B, Qiu Z, Ma J, et al. On-particle rolling circle amplification-based core-satellite magnetic superstructures for microRNA detection[J]. ACS Appl Mater Interfaces, 2018, 10(3): 2957-2964. | [16] | Deng XJ, Qin SS, Chen YQ, et al. B-RCA revealed circulating miR-33a/b associates with serum cholesterol in type 2 diabetes patients at high risk of ASCVD[J]. Diabetes Res Clin Pract, 2018, 140: 191-199. | [17] | Yao MD, Lv XF, Deng YL, et al. Specific and simultaneous detection of micro RNA 21 and let-7a by rolling circle amplification combined with lateral flow strip[J]. Anal Chim Acta, 2019, 1055: 115-125. | [18] | Treerattrakoon K, Jiemsakul T, Tansarawiput C, et al. Rolling circle amplification and graphene-based sensor-on-a-chip for sensitive detection of serum circulating miRNAs[J]. Anal Biochem, 2019, 577: 89-97. | [19] | Chen GL, Wang LQ, Liu TL, et al. Identification and expression profiling of circulating microRNAs in serum of Cysticercus pisiformis-infected rabbits[J]. Genes, 2021, 12(10): 1591. | [20] | Zhang JJ. Methodological study on rolling circle amplification detection of miR-93-5p[D]. Shenyang: China Medical University, 2019: 8-10. (in Chinese) | | (张佳佳. 滚环扩增检测miR-93-5p的方法学研究[D]. 沈阳: 中国医科大学, 2019: 8-10.) | [21] | Mu Y, McManus DP, Gordon CA, et al. Parasitic helminth-derived microRNAs and extracellular vesicle cargos as biomarkers for helminthic infections[J]. Front Cell Infect Microbiol, 2021, 11: 708952. | [22] | Hoy AM, Lundie RJ, Ivens A, et al. Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection[J]. PLoS Negl Trop Dis, 2014, 8(2): e2701. | [23] | Cai PF, Gobert GN, You H, et al. Circulating miRNAs: potential novel biomarkers for hepatopathology progression and diagnosis of schistosomiasis japonica in two murine models[J]. PLoS Negl Trop Dis, 2015, 9(7): e0003965. | [24] | Mu Y, Cai PF, Olveda RM, et al. Parasite-derived circulating microRNAs as biomarkers for the detection of human Schistosoma japonicum infection[J]. Parasitology, 2020, 147(8): 889-896. | [25] | Cao DP, Jiang BF, Zhang YG, et al. microRNA-125b-5p is a promising novel plasma biomarker for alveolar echinococcosis in patients from the southern Province of Qinghai[J]. BMC Infect Dis, 2021, 21(1): 246. | [26] | Chen XG, Li ZY, Maleewong W, et al. Serum aca-mir-146a is a potential biomarker for early diagnosis of Angiostrongylus cantonensis infection[J]. Parasitol Res, 2014, 113(9): 3221-3227. | [27] | Yang DY, Chen L, Xie Y, et al. Expression and immunolocalisation of TpFABP as a candidate antigen for the serodiagnosis of rabbit Taenia pisiformis cysticercosis[J]. Parasite, 2013, 20: 53. | [28] | Yang DY, Chen L, Wu XH, et al. Expression of the Tpanxb1 gene from Taenia pisiformis and its potential diagnostic value by dot-ELISA[J]. J Parasitol, 2014, 100(2): 246-250. | [29] | Chen L, Yang DY, Gu XB, et al. Evaluation of a novel dot-ELISA assay utilizing a recombinant protein for the effective diagnosis of Taenia pisiformis larval infections[J]. Vet Parasitol, 2014, 204(3/4): 214-220. | [30] | Wang LJ, Zhang SH, Mao L, et al. Development of indirect ELISA for the diagnosis of Cysticercus pisiformis infection based on recombinant serpin[J]. Chin Vet Sci, 2018, 48(4): 443-449. (in Chinese) | | (王莉杰, 张少华, 毛立, 等. 基于serpin重组蛋白的豆状囊尾蚴病间接ELISA诊断方法的初步建立[J]. 中国兽医科学, 2018, 48(4): 443-449.) |
|