[1] | Durden LA,, Musser GG. The sucking lice (Insecta, Anoplura) of the world: a taxonomic checklist with records of mammalian hosts and geographical distributions[J]. Bull Am Mus Nat Hist, 1994, 218: 1-90. | [2] | Chin TH. Taxonomy and fauna of sucking lice (Anoplura) in China[M]. Beijing: Science Press, 1999: 44-45. (in Chinese) | [2] | (金大雄. 中国吸虱的分类与检索[M]. 北京: 科学出版社, 1999: 44-45.) | [3] | Luo ZX,, Chen W,, Gao W. Fauna sinica[M]. Beijing: Science Press, 2000: 449-451. (in Chinese) | [3] | (罗泽珣,, 陈卫,, 高武. 中国动物志[M]. 北京: 科学出版社, 2000: 449-451.) | [4] | Zhu WL,, Jia T,, Lian X, et al. Seasonal variations of maximum metabolic rate in Eothenomys miletusin Hengduan mountains region[J]. Acta Ecol Sin, 2010, 30(5): 1133-1139. (in Chinese) | [4] | (朱万龙,, 贾婷,, 练硝, 等. 横断山脉大绒鼠最大代谢率的季节性差异[J]. 生态学报, 2010, 30(5): 1133-1139.) | [5] | Guo M,, Dong XQ. Development situation of the plague foci Apodemus chevrieri and Eothenomys miletus in northwest Yunnan Province[J]. Chin J Control of Endem Dis, 2008, 23(1): 27-31. (in Chinese) | [5] | (郭牧,, 董兴齐. 滇西北齐氏姬鼠、大绒鼠鼠疫疫源地的发展概况[J]. 中国地方病防治杂志, 2008, 23(1): 27-31.) | [6] | Dong WG,, Guo XG,, Men XY, et al. Ectoparasites of Eothenomys miletus in the focus of plague in northwest Yunnan[J]. Sichuan J Zool, 2009, 28(5): 683-690. | [7] | Peng PY,, Guo XG,, Song WY, et al. Investigation of ectoparasites on body surface of Eothenomys miletus in some places of Guizhou[J]. Guizhou Agric Sci, 2015, 43(2): 75-79. (in Chinese) | [7] | (彭培英,, 郭宪国,, 宋文宇, 等. 贵州省部分地区大绒鼠体表寄生虫调查[J]. 贵州农业科学, 2015, 43(2): 75-79.) | [8] | Zhang YZ,, Zhang HL,, Mi ZQ, et al. Monitoring of hemorrhagic fever with renal syndrome in Yunnan Province, China, 2005[J]. Chin J Vector Biol Control, 2008, 19(2): 148-150. (in Chinese) | [8] | (张云智,, 张海林,, 米竹青, 等. 2005年云南省肾综合征出血热监测研究[J]. 中国媒介生物学及控制杂志, 2008, 19(2): 148-150.) | [9] | Boore JL. Animal mitochondrial genomes[J]. Nucleic Acids Res, 1999, 27(8): 1767-1780. | [10] | Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny[J]. Annu Rev Entomol, 2014, 59(1): 95-117. | [11] | Jiang H,, Barker SC,, Shao R. Substantial variation in the extent of mitochondrial genome fragmentation among blood-sucking lice of mammals[J]. Genome Biol Evol, 2013, 5(7): 1298-1308. | [12] | Song SD,, Barker SC,, Shao R. Variation in mitochondrial minichromosome composition between blood-sucking lice of the genus Haematopinus that infest horses and pigs[J]. Parasit Vectors, 2014, 7: 144. | [13] | Shao R,, Kirkness EF,, Barker SC. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus[J]. Genome Res, 2009, 19(5): 904-912. | [14] | Shao R,, Zhu XQ,, Barker SC, et al. Evolution of extensively fragmented mitochondrial genomes in the lice of humans[J]. Genome Biol Evol, 2012, 4(11): 1088-1101. | [15] | Dong WG,, Song S,, Guo XG, et al. Fragmented mitochondrial genomes are present in both major clades of the blood-sucking lice(Suborder Anoplura): evidence from two Hoplopleura rodent lice (family Hoplopleuridae)[J]. BMC Genom, 2014, 15(1): 1-13. | [16] | Dong WG,, Song S,, Jin DC, et al. Fragmented mitochondrial genomes of the rat lice, Polyplax asiatica and Polyplax spinulosa: intra-genus variation in fragmentation pattern and a possible link between the extent of fragmentation and the length of life cycle[J]. BMC Genom, 2014, 15: 44. | [17] | Shao R,, Li H,, Barker SC, et al. The mitochondrial genome of the guanaco louse, Microthoracius praelongiceps: insights into the ancestral mitochondrial karyotype of sucking lice (Anoplura, Insecta)[J]. Genome Biol Evol, 2017, 9(2): 431-445. | [18] | Fu YT,, Dong Y,, Wang W, et al. Fragmented mitochondrial genomes evolved in opposite directions between closely related macaque louse Pedicinus obtusus and colobus louse Pedicinus badii[J]. Genomics, 2020, 112(6): 4924-4933. | [19] | Herd KE,, Barker SC,, Shao R. The mitochondrial genome of the chimpanzee louse, Pediculus schaeffi: insights into the process of mitochondrial genome fragmentation in the blood-sucking lice of great apes[J]. BMC Genom, 2015, 16: 661. | [20] | Kearse M,, Moir R,, Wilson A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12): 1647-1649. | [21] | Laslett D,, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences[J]. Bioinformatics, 2008, 24(2): 172-175. | [22] | Lowe TM,, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Res, 1997, 25(5): 955-964. | [23] | Altschul SF,, Madden TL,, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17): 3389-3402. | [24] | Gish W,, States DJ. Identification of protein coding regions by database similarity search[J]. Nat Genet, 1993, 3(3): 266-272. | [25] | Puigbò P,, Bravo IG,, Garcia-Vallve S. CAIcal: a combined set of tools to assess codon usage adaptation[J]. Biol Direct, 2008, 3: 38. | [26] | Perna NT,, Kocher TD. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes[J]. J Mol Evol, 1995, 41(3): 353-358. | [27] | Shao R,, Barker SC,, Li H, et al. Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta)[J]. Sci Rep, 2015, 5: 17389. | [28] | Song F,, Li H,, Liu GH, et al. Mitochondrial genome fragmentation unites the parasitic lice of eutherian mammals[J]. Syst Biol, 2019, 68(3): 430-440. | [29] | Shi GH,, Cui ZX,, Hui M, et al. The complete mitochondrial genomes of Umalia orientalis and Lyreidus brevifrons: the phylogenetic position of the family Raninidae within Brachyuran crabs[J]. Mar Genom, 2015, 21: 53-61. | [30] | Chen XX,, Yuan ZW,, Yuan XW, et al. Advances in mitochondrial genome complete sequence structure of leafhopper[J]. Genom Appl Biol, 2020, 39(6): 2565-2577. (in Chinese) | [30] | (陈晓晓,, 袁周伟,, 苑晓伟, 等. 叶蝉线粒体基因组全序列结构研究进展[J]. 基因组学与应用生物学, 2020, 39(6): 2565-2577.) | [31] | Kolesnikov AA,, Gerasimov ES. Diversity of mitochondrial genome organization[J]. Biochemistry(Mosc), 2012, 77(13): 1424-1435. | [32] | Li JJ. Research on phylogeny and acoustic signal evolution of Ensifera based on complete mitochondrial genome[D]. Chang-chun:Northeast Normal University, 2018: 13-28. (in Chinese) | [32] | (李君健. 基于线粒体基因组的螽亚目昆虫系统发育与鸣声进化研究[D]. 长春:东北师范大学, 2018: 13-28.) | [33] | Ou J. Complete mitochondrial genomes sequences of six stored grain beetles[D]. Xi’an:Shanxi Normal University, 2015: 15-57. (in Chinese) | [33] | (欧静. 六种储粮甲虫线粒体基因组测定及分析[D]. 西安:陕西师范大学, 2015: 15-57.) | [34] | Zhou F. Complete mitochondrial genomes sequences of four locust and analyzed the phylogeny of Orthoptera[D]. Xi’an:Shanxi Normal University, 2015: 27-50. (in Chinese) | [34] | (周飞. 四种蝗虫线粒体基因组测定及直翅目系统发生分析[D]. 西安:陕西师范大学, 2015: 27-50.) | [35] | Wu YM. Genome sequencing and transcriptome analysis of chemosensory genes of two meloids[D]. Guiyang:Guizhou University, 2018: 36-41. (in Chinese) | [35] | (吴渊明. 两种芫菁的全基因组测序和化学感受器转录组基因的鉴定与分析[D]. 贵阳:贵州大学, 2018: 36-41.) | [36] | Xia LY,, Sun WW,, Cui M, et al. Sequencing and analysis of mitochondrial genome of Lasioderma serricorne[J]. Tob Sci Technol, 2020, 53(12): 1-8. (in Chinese) | [36] | (夏丽媛,, 孙为伟,, 崔淼, 等. 烟草甲线粒体基因组序列测定与分析[J]. 烟草科技, 2020, 53(12): 1-8.) | [37] | Liu J,, Bian X. Characteristics of the Orthoptera mitogenome and its application[J]. J Guangxi Norm Univ Nat Sci Ed, 2021, 39(1): 17-28. (in Chinese) | [37] | 刘静,, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17-28.) | [38] | Yan D,, Tang Y,, Hu M, et al. The mitochondrial genome of Frankliniella intonsa: insights into the evolutionof mitochondrial genomes at lower taxonomic levels in Thysanoptera[J]. Genomics, 2014, 104(4): 306-312. | [39] | Chen S. Complete mitochondrial genomes sequences of six species of Spilomelinae[D]. Xi’an: Shanxi Normal University, 2017: 34-37. (in Chinese) | [39] | (陈汕. 六种斑野螟亚科昆虫全线粒体基因组的序列测定与分析[D]. 西安:陕西师范大学, 2017: 34-37.) | [40] | Varani G,, Mcclain WH. The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems[J]. Embo Rep, 2000, 1(1): 18-23. | [41] | Wang XM. Structural characteristics of mitochondrial genome and preliminary phylogenetic analysis for Lepus hainanus[D]. Jinan: Shandong University, 2012: 3-4. (in Chinese) | [41] | (王晓明. 海南兔的线粒体基因组结构特征与系统演化初探[D]. 济南:山东大学, 2012: 3-4.) | [42] | Broughton RE,, Dowling TE. Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera[J]. Genetics, 1994, 138(1): 179-190. | [43] | Ladoukakis ED,, Zouros E. Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA[J]. Mol Biol Evol, 2001, 18(7): 1168-1175. | [44] | Okada K,, Yamazaki Y,, Yokobori S, et al. Repetitive sequences in the lamprey mitochondrial DNA control region and speciation of Lethenteron[J]. Gene, 2010, 465(1/2): 45-52. | [45] | Ray DA,, Densmore LD. Repetitive sequences in the crocodilian mitochondrial control region: Poly-A sequences and heteroplasmic tandem repeats[J]. Mol Biol Evol, 2003, 20(6): 1006-1013. | [46] | Shi W,, Kong XY,, Wang ZM, et al. Pause-melting misalignment: a novel model for the birth and motif indel of tandem repeats in the mitochondrial genome[J]. BMC Genom, 2013, 14: 103. |
|