[1] | Nasci RS, Miller BR. Culicine mosquitoes and the agents they transmit[J]. Biol Dis Vectors, 1996,18(2):85-97. | [2] | Arensburger P, Megy K, Waterhouse RM, et al. Sequencing of Culex pipiens quinquefasciatus establishes a platform for mosquito comparative genomics[J]. Science, 2010,330(6000):86-88. | [3] | Liu NN, Liu HQ, Zhu F, et al. Differential expression of genes in pyrethroid resistant and susceptible mosquitoes, Culex quinquefasciatus (S.)[J]. Gene, 2007,394(1/2):61-68. | [4] | Ding YR, Yan ZT, Si FL, et al. Mitochondrial genes associated with pyrethroid resistance revealed by mitochondrial genome and transcriptome analyses in the malaria vector Anopheles sinensis (Diptera ∶ Culicidae)[J]. Pest Manag Sci, 2020,76(2):769-778. | [5] | Liu BQ, Chen B, Qiao L. The progress of quantitative trait loci for mosquitoes pyrethroid resistance[J]. J Chongqing Norm Univ Nat Sci, 2016,33(6):26-31. (in Chinese) | [5] | ( 刘柏琦, 陈斌, 乔梁. 蚊虫抗拟除虫菊酯数量性状位点的研究进展[J]. 重庆师范大学学报(自然科学版), 2016,33(6):26-31.) | [6] | Cai YS, Deng ML, Yuan MT, et al. Resistance of Culex quinquefasciatus to normal used insceticides in Guang’an City[J]. Chin J Hyg Insect Equip, 2018,24(4):410-411. (in Chinese) | [6] | ( 蔡运山, 邓茂玲, 袁茂涛, 等. 广安市致倦库蚊对常用杀虫剂的抗性监测[J]. 中华卫生杀虫药械, 2018,24(4):410-411.) | [7] | Yang XY, Liu C, Chen XW, et al. Resistance to 3 kind of pyrethroid insecticides in Culex pipiens quinquefasciatus from Haikou[J]. China Trop Med, 2019,19(11):1092-1094. (in Chinese) | [7] | ( 杨新艳, 刘超, 陈学文, 等. 海口市致倦库蚊成蚊对3种菊酯类杀虫剂的抗性调查[J]. 中国热带医学, 2019,19(11):1092-1094.) | [8] | Liang QG, Wang ZY, Yang X, et al. Investigation on resistance of Culex pipiens quinquefasciatus to four commonly used insecticides in Guiyang[J]. Chin J Endem, 2019,8(6):476-480. (in Chinese) | [8] | ( 梁秋果, 王政艳, 杨茜, 等. 贵阳市致倦库蚊成蚊对4种常用杀虫剂抗药性调查[J]. 中华地方病学杂志, 2019,8(6):476-480.) | [9] | Liu Y, Zhang SH, Qin YM, et al. Investigation on current status of resistance of Culex pipiens quinquefasciatus to commonly used insecticides in Shenzhen City, Guangdong Province[J]. Chin J Vect Biol Contr, 2020,31(3):362-365. (in Chinese) | [9] | ( 刘阳, 张韶华, 秦彦珉, 等. 广东省深圳市致倦库蚊对常用杀虫剂抗药性现状调查[J]. 中国媒介生物学及控制杂志, 2020,31(3):362-365.) | [10] | Phillips RS. Current status of malaria and potential for control[J]. Clin Microbiol Rev, 2001,14(1):208-226. | [11] | Sawicki RM, Denholm I. Adaptation of insects to insecticides[M] //Evered D, Collins GM. Ciba Foundation Symposium--Origins and Development of Adaptation. Chichester, UK: John Wiley & Sons, Ltd., 2008: 152-166. | [12] | Brattsten LB, Holyoke CW, Leeper JR, et al. Insecticide resistance: challenge to pest management and basic research[J]. Science, 1986,231(4743):1255-1260. | [13] | Xu X, Qian K. Research progress on the resistance of mosquitoes to pyrethroid insecticides[J]. Cap J Pub Health, 2018,12(1):9-12. (in Chinese) | [13] | ( 徐鑫, 钱坤. 蚊虫对拟除虫菊酯类杀虫剂抗性研究进展[J]. 首都公共卫生, 2018,12(1):9-12.) | [14] | Wang CB, Lu WH, Lin Y, et al. Development and application of transcriptome sequencing[J]. Eucalypt Sci Technol, 2018,35(4):20-26. (in Chinese) | [14] | ( 王楚彪, 卢万鸿, 林彦, 等. 转录组测序的发展和应用[J]. 桉树科技, 2018,35(4):20-26.) | [15] | Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009,10(1):57-63. | [16] | Br?utigam A, Gowik U. What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research[J]. Plant Biol (Stuttg), 2010,12(6):831-841. | [17] | Bonizzoni M, Ochomo E, Dunn WA, et al. RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs[J]. Parasit Vectors, 2015,8:474. | [18] | Lv Y, Wang WJ, Hong SC, et al. Comparative transcriptome analyses of deltamethrin-susceptible and-resistant Culex pipiens pallens by RNA-seq[J]. Mol Genet Genomics, 2016,291(1):309-321. | [19] | Li CX, Guo XX, Zhang YM, et al. Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos-insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera ∶ Culicidae)[J]. Acta Trop, 2016,157:84-95. | [20] | Bonizzoni M, Afrane Y, Dunn WA, et al. Comparative transcriptome analyses of deltamethrin-resistant and-susceptible Anopheles gambiae mosquitoes from Kenya by RNA-seq[J]. PLoS One, 2012,7(9):e44607. | [21] | WHO. Report of the WHO Informal Consultationon the evaluation and testing of insecticides[R]. Geneva: WHO, 1996: 7-11. | [22] | Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-seq[J]. Nat Methods, 2008,5(7):621-628. | [23] | Garber M, Grabherr MG, Guttman M, et al. Computational methods for transcriptome annotation and quantification using RNA-seq[J]. Nat Methods, 2011,8(6):469-477. | [24] | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014,15(12):550. | [25] | Young MD, Wakefield MJ, Smyth GK, et al. Gene ontology analysis for RNA-seq: accounting for selection bias[J]. Genome Biol, 2010,11(2):R14. | [26] | Sun HB, Sun LC, He J, et al. Cloning and characterization of ribosomal protein S29, a deltamethrin resistance associated gene from Culex pipiens pallens[J]. Parasitol Res, 2011,109(6):1689-1697. | [27] | Yu J, Hu SL, Ma K, et al. Ribosomal protein S29 regulates metabolic insecticide resistance through binding and degradation of CYP6N3[J]. PLoS One, 2014,9(4):e94611. | [28] | Liu HQ, Liu YB, Song YP, et al. Cloning and bioinformatics analysis of full length cDNA of permethrin-resistance associated opsin gene PR-OP of Culex pipens pallens[J]. J Northwest A F Univ Nat Sci Ed, 2010,38(9):109-117. (in Chinese) | [28] | ( 刘虎岐, 刘应保, 宋云鹏, 等. 淡色库蚊氯菊酯抗性相关基因PR-OP全长cDNA的克隆及生物信息学分析[J]. 西北农林科技大学学报(自然科学版), 2010,38(9):109-117.) | [29] | Zhou D, Duan BY, Xu Y, et al. NYD-OP7/PLC regulatory signaling pathway regulates deltamethrin resistance in Culex pipiens pallens (Diptera ∶ Culicidae)[J]. Parasit Vectors, 2018,11(1):419. | [30] | Hu XB, Sun Y, Wang WJ, et al. Cloning and characterization of NYD-OP7, a novel deltamethrin resistance associated gene from Culex pipiens pallens[J]. Pestic Biochem Physiol, 2007,88(1):82-91. | [31] | Tang AH, Tu CP. Biochemical characterization of Drosophila glutathione S-transferases D1 and D21[J]. J Biol Chem, 1994,269(45):27876-27884. | [32] | Gong YH, Li T, Zhang L, et al. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus[J]. Int J Biol Sci, 2013,9(9):863-871. | [33] | Tene BF, Poupardin R, Costantini C, et al. Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the City of Yaoundé Cameroon[J]. PLoS One, 2013,8(4):e61408. | [34] | Menze BD, Riveron JM, Ibrahim SS, et al. Multiple insecticide resistance in the malaria vector Anopheles funestus from northern Cameroon is mediated by metabolic resistance alongside potential target site insensitivity mutations[J]. PLoS One, 2016,11(10):e0163261 | [35] | Djègbè I, Agossa FR, Jones CM, et al. Molecular characterization of DDT resistance in Anopheles gambiae from Benin[J]. Parasit Vectors, 2014,7(1):409. | [36] | Paramasivan R, Sivaperumal R, Dhananjeyan KJ, et al. Prediction of 3-dimensional structure of salivary odorant-binding protein-2 of the mosquito Culex pipiens quinquefasciatus, the vector of human lymphatic filariasis[J]. In Silico Biol, 2007,7(1):1-6. | [37] | Xu PX, Choo YM, de la Rosa A, et al. Mosquito odorant receptor for DEET and methyl jasmonate[J]. Proc Natl Acad Sci USA, 2014,111(46):16592-16597. | [38] | Hallem EA, Dahanukar A, Carlson JR. Insect odor and taste receptors[J]. Annu Rev Entomol, 2006,51:113-135. | [39] | Ingham VA, Anthousi A, Douris V, et al. A sensory appendage protein protects malaria vectors from pyrethroids[J]. Nature, 2020,577(7790):376-380. | [40] | Yu TY, Garcia VE, Symington LS. CDK and Mec1/Tel1-catalyzed phosphorylation of Sae2 regulate different responses to DNA damage[J]. Nucleic Acids Res, 2019,47(21):11238-11249. |
|