[1] |
黎雪梅, 李小兵, 黄伟. 顶复门线粒体基因组结构的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(5): 388-392.
|
[2] |
Witze ES, Old WM, Resing KA, et al. Mapping protein post-translational modifications with mass spectrometry[J]. Nat Methods, 2007, 4(10): 798-806.
|
[3] |
杨培梁, 陈晓光. 弓形虫表观遗传学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(3): 228-232.
|
[4] |
Silmon de Monerri NC, Yakubu RR, Chen AL, et al. The ubiquitin proteome of Toxoplasma gondii reveals roles for protein ubiquitination in cell-cycle transitions[J]. Cell Host Microbe, 2015, 18(5): 621-633.
|
[5] |
Jennissen HP.Ubiquitin and the enigma of intracellular protein degradation[J]. Eur J Biochem, 1995, 231(1): 1-30.
|
[6] |
Zhou MJ, Chen FZ, Chen HC.Ubiquitination involved enzymes and cancer[J]. Med Oncol, 2014, 31(8): 93.
|
[7] |
Liu C, Liu WX, Ye YH, et al. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains[J]. Nat Commun, 2017, 8: 14274.
|
[8] |
Komander D, Rape M.The ubiquitin code[J]. Annu Rev Biochem, 2012, 81: 203-229.
|
[9] |
Herrmann J, Lerman LO, Lerman A.Ubiquitin and ubiquitin-like proteins in protein regulation[J]. Circ Res, 2007, 100(9): 1276-1291.
|
[10] |
Welchman RL, Gordon C, Mayer RJ.Ubiquitin and ubiquitin-like proteins as multifunctional signals[J]. Nat Rev Mol Cell Biol, 2005, 6(8): 599-609.
|
[11] |
Zencheck WD, Xiao H, Weiss LM.Lysine post-translational modifications and the cytoskeleton[J]. Essays Biochem, 2012, 52: 135-145.
|
[12] |
Wagner SA, Beli P, Weinert BT, et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles[J]. Mol Cell Proteomics, 2011, 10(10): M111.013284.
|
[13] |
Bassermann F, Eichner R, Pagano M.The ubiquitin proteasome system-implications for cell cycle control and the targeted treatment of cancer[J]. Biochim Biophys Acta, 2014, 1843(1): 150-162.
|
[14] |
Lasonder E, Green JL, Grainger M, et al. Extensive differential protein phosphorylation as intraerythrocytic Plasmodium falciparum schizonts develop into extracellular invasive merozoites[J]. Proteomics, 2015, 15(15): 2716-2729.
|
[15] |
Ponts N, Saraf A, Chung DW, et al. Unraveling the ubiquitome of the human malaria parasite[J]. J Biol Chem, 2011, 286(46): 40320-40330.
|
[16] |
Behnke MS, Wootton JC, Lehmann MM, et al. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii[J]. PLoS One, 2010, 5(8): e12354.
|
[17] |
Radke JR, Striepen B, Guerini MN, et al. Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii[J]. Mol Biochem Parasitol, 2001, 115(2): 165-175.
|
[18] |
Conde de Felipe MM, Lehmann MM, Jerome ME, et al. Inhibition of Toxoplasma gondii growth by pyrrolidine dithiocarbamate is cell cycle specific and leads to population synchronization[J]. Mol Biochem Parasitol, 2008, 157(1): 22-31.
|
[19] |
Dhara A, Sinai AP.A cell cycle-regulated Toxoplasma deubiquitinase, TgOTUD3A, targets polyubiquitins with specific lysine linkages[J]. mSphere, 2016, 1(3): e00085-16.
|
[20] |
Wickliffe KE, Williamson A, Meyer HJ, et al. K11-linked ubiquitin chains as novel regulators of cell division[J]. Trends Cell Biol, 2011, 21(11): 656-663.
|
[21] |
Bremm A, Komander D.Emerging roles for Lys11-linked polyubiquitin in cellular regulation[J]. Trends Biochem Sci, 2011, 36(7): 355-363.
|
[22] |
Francia ME, Striepen B.Cell division in apicomplexan parasites[J]. Nat Rev Microbiol, 2014, 12(2): 125-136.
|
[23] |
Rodrigo-Brenni MC, Morgan DO.Sequential E2s drive polyubiquitin chain assembly on APC targets[J]. Cell, 2007, 130(1):127-139.
|
[24] |
Dhara A, de Paula Baptista R, Kissinger JC, et al. Ablation of an ovarian tumor family deubiquitinase exposes the underlying regulation governing the plasticity of cell cycle progression in Toxoplasma gondii[J]. MBio, 2017, 8(6): e01846-17.
|
[25] |
Le Roch KG, Johnson JR, Florens L, et al. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle[J]. Genome Res, 2004, 14(11): 2308-2318.
|
[26] |
Yakubu RR, Weiss LM, Silmon de Monerri NC. Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies[J]. Mol Microbiol, 2018, 107(1): 1-23.
|
[27] |
Bheda A, Gullapalli A, Caplow M, et al. Ubiquitin editing enzyme UCH L1 and microtubule dynamics: implication in mitosis[J]. Cell Cycle, 2010, 9(5): 980-994.
|
[28] |
Morrissette N.Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen[J]. Eukaryot Cell, 2015, 14(1): 2-12.
|
[29] |
Hu K, Johnson J, Florens L, et al. Cytoskeletal components of an invasion machine--the apical complex of Toxoplasma gondii[J]. PLoS Pathog, 2006, 2(2): e13.
|
[30] |
Morrissette NS, Murray JM, Roos DS.Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii[J]. J Cell Sci, 1997, 110(Pt 1): 35-42.
|
[31] |
Kono M, Prusty D, Parkinson J, et al. The apicomplexan inner membrane complex[J]. Front Biosci (Landmark Ed), 2013, 18(83): 982-992.
|
[32] |
Ouologuem DT, Roos DS.Dynamics of the Toxoplasma gondii inner membrane complex[J]. J Cell Sci, 2014, 127(Pt 15): 3320-3330.
|
[33] |
Anderson-White B, Beck JR, Chen CT, et al. Cytoskeleton assembly in Toxoplasma gondii cell division[J]. Int Rev Cell Mol Biol, 2012, 298: 1-31.
|
[34] |
Saeki Y, Tanaka K.Assembly and function of the proteasome[J]. Methods Mol Biol, 2012, 832: 315-337.
|
[35] |
Xolalpa W, Perez-Galan P, Rodriguez MS, et al. Targeting the ubiquitin proteasome system: beyond proteasome inhibition[J]. Curr Pharm Des, 2013, 19(22): 4053-4093.
|
[36] |
Wondrak GT.The ubiquitin-proteasome system (UPS) as a cancer drug target: emerging mechanisms and therapeutics[M]//Mata-Cantero L, Lobato-Gil S, Aillet F, et al. Stress Response Pathways in Cancer. Dordrecht: Springer Netherlands, 2014: 225-264.
|
[37] |
Aminake MN, Schoof S, Sologub L, et al. Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast[J]. Antimicrob Agents Chemother, 2011, 55(4): 1338-1348.
|
[38] |
Ngwa CJ, Scheuermayer M, Mair GR, et al. Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito[J]. BMC Genomics, 2013, 14(1): 256.
|
[39] |
Hershko A, Ciechanover A.The ubiquitin system[J]. Annu Rev Biochem, 1998, 67(1): 425-479.
|
[40] |
Jayabalasingham B, Bano N, Coppens I.Metamorphosis of the malaria parasite in the liver is associated with organelle clearance[J]. Cell Res, 2010, 20(9): 1043-1059.
|
[41] |
Mata-Cantero L, Azkargorta M, Aillet F, et al. New insights into host-parasite ubiquitin proteome dynamics in P. falciparum infected red blood cells using a TUBEs-MS approach[J]. J Proteomics, 2016, 139: 45-59.
|
[42] |
Amsterdam A, Pitzer F, Baumeister W.Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control[J]. Proc Natl Acad Sci USA, 1993, 90(1): 99-103.
|
[43] |
Paugam A, Creuzet C, Dupouy-Camet J, et al. Evidence for the existence of a proteasome in Toxoplasma gondii: intracellular localization and specific peptidase activities[J]. Parasite, 2001, 8(4): 267-273.
|
[44] |
Nannmark U, Kitson RP, Johansson BR, et al. Immunocytochemical localization of multicatalytic protease complex (proteasome) during generation of murine IL-2-activated natural killer (A-NK) cells[J]. Eur J Cell Biol, 1996, 71(4): 402-408.
|
[45] |
Knecht E, Palmer A, Sweeney ST, et al. Immunocytochemical localization of the multicatalytic proteinase in rat liver and in L-132 cells[J]. Biochem Soc Trans, 1991, 19(3): 293S.
|
[46] |
Russell SJ, Steger KA, Johnston SA.Subcellular localization, stoichiometry, and protein levels of 26S proteasome subunits in yeast[J]. J Biol Chem, 1999, 274(31): 21943-21952.
|