[1] | 中国疾病预防控制中心. 消除疟疾技术方案(2011年版)[Z]. 北京: 中国疾病预防控制中心文件, 2011. | [2] | Yin JH, Yan H, Huang F, et al. Establishing a China malaria diagnosis reference laboratory network for malaria elimination[J]. Malar J, 2015, 14: 40. | [3] | 李美, 燕贺, 周何军, 等. WHO对中国疟原虫镜检能力外部评估与结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5): 499-503. | [4] | World Health Organization.Malaria microscopy quality assurance manual, version 1[M]. Geneva: WHO, 2016. | [5] | World Health Organization.Results of WHO product testing of malaria RDTs: round 7 (2015-2016)[M]. Geneva: WHO, 2017. | [6] | 李美, 王真瑜, 张淘, 等. 一步反转录PCR技术在检测4种人疟原虫中的初步应用[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(6): 500-505. | [7] | 李美, 夏志贵, 汤林华. 检测4种人体疟原虫多重PCR体系的建立和应用[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(2): 91-95. | [8] | 江莉, 王真瑜, 张耀光, 等. 3种疟疾检测方法的应用分析[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(1): 53-58. | [9] | Padley DJ, Heath AB, Sutherland C, et al. Establishment of the 1st World Health Organization International Standard for Plasmodium falciparum DNA for nucleic acid amplification technique (NAT)-based assays[J]. Malar J, 2008, 7: 139. | [10] | Feng J, Zhang L, Huang F, et al. Ready for malaria elimination: zero indigenous case reported in the People’s Republic of China[J]. Malar J, 2018, 17: 315. | [11] | Li M, Li J, Xia ZG, et al. A combined strategy for screening a clustered mobile population returning from highly endemic areas for Plasmodium falciparum[J]. J Infect Dev Ctries, 2017, 11(4): 287-293. | [12] | 汤林华, 高琪, 余新炳, 等. WS259-2015 疟疾的诊断[S]. 北京: 中华人民共和国卫生和计划生育委员会, 2015. | [13] | Kamau E, Tolbert LS, Kortepeter L, et al. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes[J]. J Clinic Microbiol, 2011, 49(8): 2946-2953. | [14] | Kamau E, Alemayehu S, Feghali KC, et al. Measurement of parasitological data by quantitative real-time PCR from controlled human malaria infection trials at the Walter Reed Army Institute of Research[J]. Malar J, 2014, 13: 288. | [15] | Lee PC, Chong ETJ, Anderios F, et al. Molecular detection of human Plasmodium species in Sabah using PlasmoNexTM multiplex PCR and hydrolysis probes real-time PCR[J]. Malar J, 2015, 14: 28. | [16] | Haanshuus CG and Mohn SC. Plasmodium genus-and species-specific real-time PCR using SYBR dye decreases laboratory time without impairing the sensitivity or specificity compared to conventional PCR[J]. Malar J, 2014, 13(Suppl 1): P39. | [17] | N.Manca PF, Calderaro A, et al. Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis[J]. J Clinic Microbiol, 2004, 42(3): 1214-1219. | [18] | Alam MS, Mohon AN, Mustafa S, et al. Real-time PCR assay and rapid diagnostic tests for the diagnosis of clinically suspected malaria patients in Bangladesh[J]. Malar J, 2011, 10: 175. | [19] | Jimenez A, Rees-Channer RR, Perera R, et al. Analytical sensitivity of current best in class malaria rapid diagnostic tests[J]. Malar J, 2017, 16: 128. | [20] | Jang JW, Cho CH, Han ET, et al. pLDH level of clinically isolated Plasmodium vivax and detection limit of pLDH based malaria rapid diagnostic test[J]. Malaria J, 2013, 12: 181. | [21] | Heutmekers M, Philippe Gillet P, Maltha J, et al. Evaluation of the rapid diagnostic test CareStart pLDH Malaria (Pf-pLDH/pan-pLDH) for the diagnosis of malaria in a reference setting[J]. Malar J, 2012, 11: 204. | [22] | Piper R, Lebras J, Wentworth L, et al. Immunocapture diagnostic assays for malaria using Plasmodium lactate dehydrogenase (pLDH)[J]. Am J Trop Med Hyg, 1999, 60(1): 109-118. | [23] | Bauffe F, Desplans J, Fraisier C, et al. Real-time PCR assay for discrimination of Plasmodium ovale curtisi and Plasmodium ovale wallikeri in the Ivory Coast and in the Comoros Islands[J]. Malar J, 2012, 11: 307. | [24] | Baker J, McCarthy J, Gatton M, et al. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests[J]. J Infect Dis, 2005, 192: 870-877. | [25] | World Health Organization False-negative RDT results and implications of new reports of P. falciparum histidine-rich protein 2/3 gene deletions[M]. Geneva: WHO, 2016. | [26] | Simpalipan P, Pattaradilokrat S, Harnyuttanakorn P.Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum[J]. Malar J, 2018, 17:16. | [27] | Jang IK, Tyler A, Lyman C, et al. Simultaneous quantification of Plasmodium antigens and host factor CRP in 2 asymptomatic individuals with confirmed malaria using a novel multiplex immunoassay[J]. J Clin Microbiol, 2019, 57(1): 1-11. | [28] | Li B, Sun ZQ, Li XH, et al. Performance of pfHRP2 versus pLDH antigen rapid diagnostic tests for the detection of Plasmodium falciparum: a systematic review and meta-analysis[J]. Arch Med Sci, 2017, 13(3): 541-549. | [29] | Wanja EW, Kuya N, Moranga C, et al. Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya[J]. Malar J, 2016, 15: 456. | [30] | Kakkilaya S.Rapid diagnosis of malaria[J]. Lab Med, 2003, 34(8): 602-608. | [31] | Mayxay M, Pukrittayakamee S, Chotivanich K, et al. Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria[J]. Trans R Soc Trop Med Hyg, 2001, 95: 179-182. | [32] | Kyabayinze DJ, Tibenderana JK, Odong GW, et al. Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda[J]. Malari J, 2008, 7: 221. | [33] | Lee JH, Jang JW, Cho CH, et al. False-positive results for rapid diagnostic tests for malaria in patients with rheumatoid factor[J]. J Clinic Microbiol, 2014, 52(10): 3784-3787. | [34] | Dalrymple U, Arambepola R, Gething PW, et al. How long do rapid diagnostic tests remain positive after anti-malarial treatment?[J]. Malar J, 2018, 17: 228. | [35] | Jaureguiberry G, Hatin I, d’Auriol L, et al. PCR detection of Plasmodium falciparum by oligonucleotide probes[J]. Mol Cell Probes, 1990, 4: 409-414. | [36] | Kamau E, Alemayehu S, Feghali KC, et al. Multiplex qPCR for detection and absolute quantification of malaria[J]. PLoS One, 2013, 8(8): e71539. | [37] | Zhao YH, Zhao Y, Lv YM, et al. Comparison of methods for detecting asymptomatic malaria infections in the China-Myanmar border area[J]. Malar J, 2017, 16: 159. | [38] | Boonma P, Christensen PR, Suwanarusk R, et al. Comparison of three molecular methods for the detection and speciation of Plasmodium vivax and Plasmodium falciparum[J]. Malar J, 2007, 6: 124. | [39] | Hodgson SH, Douglas AD, Edwards NJ, et al. Increased sample volume and use of quantitative reverse-transcription PCR can improve prediction of liver-to-blood inoculum size in controlled human malaria infection studies[J]. Malar J, 2015, 14: 33. | [40] | Abdullah NR, Furuta T, Taib R, et al. Development of a new diagnostic method for Plasmodium falciparum infection using a reverse transcriptase-polymerase chain reaction[J]. Am J Trop Med Hyg, 1999, 54(2): 162-163. | [41] | 刘季, 宋贞柱, 谢润红, 等. 大鼠死后脑组织RNA降解与死亡时间推断的研究[J].中国法医学杂志, 2007, 2(4): 226-228, 232. | [42] | 黄可. 引物和探针核苷酸错配对PCR灵敏度和特异性影响的研究[D]. 扬州: 扬州大学, 2017. | [43] | 杨奇奇. DNA聚合酶与引物/模板的相互作用对PCR效率的影响[D]. 上海: 复旦大学, 2013. | [44] | Berry A, Benoit-Vical F, Fabre R, et al. PCR-based methods to the diagnosis of imported malaria[J]. Parasite, 2008, 15: 484-488. | [45] | Snounou G, Viriyakosol S, Jarra W, et al. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections[J]. Mol Biochem Parasitol, 1993, 58(2): 283-292. | [46] | Tun KM, Imwong M, Lwin KM, et al.Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker[J]. Lancet Infect Dis, 2015, 15: 415-421. | [47] | Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014, 505(7481): 50-55. | [48] | Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2014, 371: 411-423. | [49] | 李美, 夏志贵, 汤林华. 卵形疟原虫wallikeri亚种及其基因检测体系的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(1): 64-67. | [50] | Grigg MJ, William T, CJ Drakeley CJ, et al. Factors that are associated with the risk of acquiring Plasmodium knowlesi malaria in Sabah, Malaysia: a case-control study protocol[J]. BMJ Open, 2014, 4: e006004. | [51] | Kamau E, Alemayehu S, Feghali KC, et al. Sample-ready multiplex qPCR assay for detection of malaria[J]. Malar J, 2014, 13: 158. | [52] | Shokoples SE, Ndao M, Kowalewska-Grochowska K, et al. Multiplexed real-time PCR assay for discrimination of Plasmodium species with improved sensitivity for mixed infections[J]. J Clinic Microbiol, 2009, 47(4): 975-980. | [53] | Khairnar K, Martin D, Lau R, et al. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance[J]. Malar J, 2009, 8: 284. | [54] | Taylor BJ, Martin KA, Arango E, et al. Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples[J]. Malar J, 2011, 10: 244. | [55] | Qari SH, Goldman IF, Pieniazek NJ, et al. Blood and sporozoite stage-specific small subunit ribosomal RNA-encoding genes of the human malaria parasite Plasmodium vivax[J]. Gene, 1994, 150(1): 43-49. | [56] | 诸欣平, 苏川, 吴忠道. 人体寄生虫学[M]. 北京: 人民卫生出版社, 2013. |
|