[1] |
Wang YA, Liang YS, Qu GL, et al. Study on biological characteristics: reproduction and viability of Biomphalaria glabrata as an intermediate host of Schistosoma mansoni[J]. Chin J Schisto Control, 2019, 31(4): 362-367. (in Chinese)
|
|
(王宜安, 梁幼生, 曲国立, 等. 曼氏血吸虫中间宿主光滑双脐螺的生物学特性: 生殖与生存[J]. 中国血吸虫病防治杂志, 2019, 31(4): 362-367.)
|
[2] |
Wang YA, Yang K, Liang YS, et al. Studies on colonization risk and potential geographical distribution of Biomphalaria glabrata as an intermediate host of Schistosoma mansoni in Mainland China[J]. Chin J Schisto Control, 2018, 30(3): 249-254, 259. (in Chinese)
|
|
(王宜安, 杨坤, 梁幼生, 等. 曼氏血吸虫中间宿主光滑双脐螺在中国大陆的定殖风险及潜在地理分布研究[J]. 中国血吸虫病防治杂志, 2018, 30(3): 249-254, 259.)
|
[3] |
Scholte RGC, Carvalho OS, Malone JB, et al. Spatial distribution of Biomphalaria spp., the intermediate host snails of Schistosoma mansoni, in Brazil[J]. Geospat Health, 2012, 6(3): S95-S101.
|
[4] |
Zhou XN, Li SZ, Xu J, et al. Surveillance and control strategy of imported schistosomiasis mansoni: an expert consensus[J]. Chin J Schisto Control, 2019, 31(6): 591-595. (in Chinese)
|
|
(周晓农, 李石柱, 许静, 等. 输入性曼氏血吸虫病监测与防控对策专家共识[J]. 中国血吸虫病防治杂志, 2019, 31(6): 591-595.)
|
[5] |
Min FY, Li SZ, Wang JS, et al. Preliminary study on the diffusion dynamics characteristics of Biomphalaria straminea in Southern China[J]. J Public Health Prev Med, 2020, 31(5): 1-5. (in Chinese)
|
|
(闵凤阳, 李石柱, 王家生, 等. 我国华南地区藁杆双脐螺扩散动力学特性初步研究[J]. 公共卫生与预防医学, 2020, 31(5): 1-5.)
|
[6] |
Li HJ, Liang YS, Dai JR, et al. Enzyme-histochemical observation on influence of suspension concentrate of niclosamide in Oncomelania hupensis snails[J]. Chin J Schisto Control, 2006, 18(6): 427-430. (in Chinese)
|
|
(李洪军, 梁幼生, 戴建荣, 等. 氯硝柳胺悬浮剂对钉螺影响的酶组织化学观察[J]. 中国血吸虫病防治杂志, 2006, 18(6): 427-430.)
|
[7] |
Xiong T, Jiang N, Xu S, et al. Metabolic profiles of Oncomelania hupensis after molluscicidal treatment: carbohydrate metabolism targeted and energy deficiency[J]. Acta Trop, 2020, 210: 105580.
doi: S0001-706X(19)31444-5
pmid: 32533936
|
[8] |
Park SJ, Shin JH, Kang HE, et al. Niclosamide induces mitochondria fragmentation and promotes both apoptotic and autophagic cell death[J]. BMB Rep, 2011, 44(8): 517-522.
doi: 10.5483/BMBRep.2011.44.8.517
|
[9] |
Pan JX, Ding K, Wang CY. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells[J]. Chin J Cancer, 2012, 31(4): 178-184.
doi: 10.5732/cjc.011.10290
|
[10] |
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100.
doi: 10.1038/s41580-019-0173-8
|
[11] |
Mnatsakanyan N, Beutner G, Porter GA, et al. Physiological roles of the mitochondrial permeability transition pore[J]. J Bioenerg Biomembr, 2017, 49(1): 13-25.
doi: 10.1007/s10863-016-9652-1
pmid: 26868013
|
[12] |
Zorova LD, Popkov VA, Plotnikov EY, et al. Mitochondrial membrane potential[J]. Anal Biochem, 2018, 552: 50-59.
doi: 10.1016/j.ab.2017.07.009
|
[13] |
Gadicherla AK, Stowe DF, Antholine WE, et al. Damage to mitochondrial complex Ⅰ during cardiac ischemia reperfusion injury is reduced indirectly by anti-anginal drug ranolazine[J]. Biochim Biophys Acta, 2012, 1817(3): 419-429.
doi: 10.1016/j.bbabio.2011.11.021
pmid: 22178605
|
[14] |
Mühling J, Tiefenbach M, López-Barneo J, et al. Mitochondrial complex Ⅱ participates in normoxic and hypoxic regulation of α-keto acids in the murine heart[J]. J Mol Cell Cardiol, 2010, 49(6): 950-961.
doi: 10.1016/j.yjmcc.2010.09.023
pmid: 20920510
|
[15] |
Luo C, Long JG, Liu JK. An improved spectrophotometric method for a more specific and accurate assay of mitochondrial complex III activity[J]. Clin Chim Acta, 2008, 395(1/2): 38-41.
doi: 10.1016/j.cca.2008.04.025
|
[16] |
Willis JH, Capaldi RA, Huigsloot M, et al. Isolated deficiencies of OXPHOS complexes Ⅰ and Ⅳ are identified accurately and quickly by simple enzyme activity immunocapture assays[J]. Biochim Biophys Acta, 2009, 1787(5): 533-538.
doi: 10.1016/j.bbabio.2008.10.009
pmid: 19041632
|
[17] |
Wang MY, Zhang YB, Xu MM, et al. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model[J]. Free Radic Biol Med, 2019, 134: 229-238.
doi: 10.1016/j.freeradbiomed.2019.01.004
|
[18] |
dos Santos GAS, Abreu e Lima RS, Pestana CR, et al. (+)α-tocopheryl succinate inhibits the mitochondrial respiratory chain complex Ⅰ and is as effective as arsenic trioxide or ATRA against acute promyelocytic leukemia in vivo[J]. Leukemia, 2012, 26(3): 451-460.
doi: 10.1038/leu.2011.216
pmid: 21869839
|
[19] |
Jastroch M, Divakaruni AS, Mookerjee S, et al. Mitochondrial proton and electron leaks[J]. Essays Biochem, 2010, 47: 53-67.
doi: 10.1042/bse0470053
pmid: 20533900
|
[20] |
Hu Y. Research about the protective effect of Rhodiola on hypoxic brain injury and its mitochondrial MPTP mechanism[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2017: 87-88. (in Chinese)
|
|
(胡尧. 红景天对缺氧脑损伤的保护作用及其神经元线粒体MPTP机制的研究[D]. 成都: 成都中医药大学, 2017: 87-88.)
|
[21] |
Kinnally KW, Peixoto PM, Ryu SY, et al. Is mPTP the gatekeeper for necrosis, apoptosis, or both?[J]. Biochim Biophys Acta, 2011, 1813(4): 616-622.
|
[22] |
Briston T, Roberts M, Lewis S, et al. Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability[J]. Sci Rep, 2017, 7(1): 10492.
doi: 10.1038/s41598-017-10673-8
pmid: 28874733
|
[23] |
Panel M, Ghaleh B, Morin D. Mitochondria and aging: a role for the mitochondrial transition pore?[J]. Aging Cell, 2018, 17(4): e12793.
doi: 10.1111/acel.2018.17.issue-4
|
[24] |
Sakamuru S, Attene-Ramos MS, Xia MH. Mitochondrial membrane potential assay[J]. Methods Mol Biol, 2016, 1473: 17-22.
|
[25] |
Teodoro JS, Machado IF, Castela AC, et al. The evaluation of mitochondrial membrane potential using fluorescent dyes or a membrane-permeable cation (TPP+) electrode in isolated mitochondria and intact cells[J]. Methods Mol Biol, 2020, 2184: 197-213.
doi: 10.1007/978-1-0716-0802-9_14
pmid: 32808227
|
[26] |
Jin J. Design, synthesis and biological evaluation of novel N-(1,3-dioxoisoindolin-5-yl) benzamides as chemical uncoupler[D]. Shanghai: East China Normal University, 2013: 5-6. (in Chinese)
|
|
(金甲. 新型N-(1, 3-二氧代异吲哚啉)芳酰胺类线粒体解偶联剂的合成与生物活性研究[D]. 上海: 华东师范大学, 2013: 5-6.)
|
[27] |
Demine S, Renard P, Arnould T. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases[J]. Cells, 2019, 8(8): 795.
doi: 10.3390/cells8080795
|
[28] |
Slocinska M, Barylski J, Jarmuszkiewicz W. Uncoupling proteins of invertebrates: a review[J]. IUBMB Life, 2016, 68(9): 691-699.
doi: 10.1002/iub.v68.9
|
[29] |
Childress ES, Alexopoulos SJ, Hoehn KL, et al. Small molecule mitochondrial uncouplers and their therapeutic potential[J]. J Med Chem, 2018, 61(11): 4641-4655.
doi: 10.1021/acs.jmedchem.7b01182
|
[30] |
Tao HL, Zhang Y, Zeng XG, et al. Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice[J]. Nat Med, 2014, 20(11): 1263-1269.
doi: 10.1038/nm.3699
|
[31] |
Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers[J]. Eur J Pharm Biopharm, 2009, 71(3): 431-444.
doi: 10.1016/j.ejpb.2008.09.026
pmid: 18977297
|