[1] | Singh M, Suryanshu, Kanika, et al. Plasmodium’s journey through the Anopheles mosquito: a comprehensive review[J]. Biochimie, 2021, 181:176-190. | [2] | Garver LS, Bahia AC, Das S, et al. Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action[J]. PLoS Pathog, 2012, 8(6):e1002737. | [3] | Ramphul UN, Garver LS, Molina-Cruz A, et al. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells[J]. Proc Natl Acad Sci USA, 2015, 112(5):1273-1280. | [4] | Zakovic S, Levashina EA. NF-κB-like signaling pathway REL2 in immune defenses of the malaria vector Anopheles gambiae[J]. Front Cell Infect Microbiol, 2017, 7:258. | [5] | Gupta L, Molina-Cruz A, Kumar S, et al. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae[J]. Cell Host Microbe, 2009, 5(5):498-507. | [6] | Cai Z, Yu X, Cheng G. Progress towards mosquito microbiome on regulating the transmission of mosquito-borne diseases[J]. Chin J Parasitol Parasit Dis, 2019, 37(5):603-608. (in Chinese) | [6] | (蔡珍, 余茜, 程功. 蚊肠道微生物调节蚊媒传染病传播的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(5):603-608.) | [7] | Raddi G, Barletta ABF, Efremova M, et al. Mosquito cellular immunity at single-cell resolution[J]. Science, 2020, 369(6507):1128-1132. | [8] | Kwon H, Smith RC. Chemical depletion of phagocytic immune cells in Anopheles gambiae reveals dual roles of mosquito hemocytes in anti-Plasmodium immunity[J]. Proc Natl Acad Sci USA, 2019, 116(28):14119-14128. | [9] | Dekmak AS, Yang XW, Dohna HZ, et al. The route of infection influences the contribution of key immunity genes to antibacterial defense in Anopheles gambiae[J]. J Innate Immun, 2020, 13(2):107-126. | [10] | Carissimo G, Pondeville E, McFarlane M, et al. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota[J]. Proc Natl Acad Sci USA, 2015, 112(2):176-185. | [11] | Song XM, Wang JW. Influence of age on the susceptibility of Anopheles stephensi to Plasmodium berghei infection[J]. Chin J Parasitol Parasit Dis, 2016, 34(6):508-512. (in Chinese) | [11] | (宋秀梅, 王敬文. 蚊龄对斯氏按蚊感染伯氏疟原虫能力的影响[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(6):508-512.) | [12] | Wang ZH, Lan JQ, Liao CH, et al. Transcriptome analysis of Aedes aegypti larvae before and after treatment with tenvermectin[J]. J Trop Biol, 2020, 11(3):281-287. (in Chinese) | [12] | (王子贺, 兰坚强, 廖承红, 等. 天维菌素处理埃及伊蚊幼虫的转录组学分析[J]. 热带生物学报, 2020, 11(3):281-287.) | [13] | Shen RX, Wang YT, Li CX, et al. Analysis of deltamethrin resistance-related genes based on the transcriptome of Culex pipiens quinquefasciatus[J]. Chin J Parasitol Parasit Dis, 2020, 38(4):453-463. (in Chinese) | [13] | (沈瑞鑫, 王意婷, 李春晓, 等. 基于致倦库蚊转录组的溴氰菊酯抗性相关基因分析[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(4):453-463.) | [14] | Hillyer JF, Barreau C, Vernick KD. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel[J]. Int J Parasitol, 2007, 37(6):673-681. | [15] | Hillyer JF, Schmidt SL, Christensen BM. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti[J]. J Parasitol, 2003, 89(1):62-69. | [16] | Sigle LT, Hillyer JF. Mosquito hemocytes preferentially aggregate and phagocytose pathogens in the periostial regions of the heart that experience the most hemolymph flow[J]. Dev Comp Immunol, 2016, 55:90-101. | [17] | King JG, Hillyer JF. Infection-induced interaction between the mosquito circulatory and immune systems[J]. PLoS Pathog, 2012, 8(11):e1003058. | [18] | Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity[J]. Insect Biochem Mol Biol, 2019, 111:103182. | [19] | Shin SW, Bian G, Raikhel AS. A toll receptor and a cytokine, Toll5A and Spz1C, are involved in toll antifungal immune signaling in the mosquito Aedes aegypti[J]. J Biol Chem, 2006, 281(51):39388-39395. |
|